Spaces:
Runtime error
Runtime error
Display first-timer-friendly models
Browse files
leaderboard/src/leaderboard/__init__.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
"""Transformers.js Benchmark Leaderboard"""
|
| 2 |
|
| 3 |
from .app import create_leaderboard_ui
|
| 4 |
-
from .data_loader import load_benchmark_data, get_unique_values, flatten_result
|
| 5 |
from .formatters import apply_formatting
|
| 6 |
|
| 7 |
__version__ = "0.1.0"
|
|
@@ -10,5 +10,6 @@ __all__ = [
|
|
| 10 |
"load_benchmark_data",
|
| 11 |
"get_unique_values",
|
| 12 |
"flatten_result",
|
|
|
|
| 13 |
"apply_formatting",
|
| 14 |
]
|
|
|
|
| 1 |
"""Transformers.js Benchmark Leaderboard"""
|
| 2 |
|
| 3 |
from .app import create_leaderboard_ui
|
| 4 |
+
from .data_loader import load_benchmark_data, get_unique_values, flatten_result, get_first_timer_friendly_models
|
| 5 |
from .formatters import apply_formatting
|
| 6 |
|
| 7 |
__version__ = "0.1.0"
|
|
|
|
| 10 |
"load_benchmark_data",
|
| 11 |
"get_unique_values",
|
| 12 |
"flatten_result",
|
| 13 |
+
"get_first_timer_friendly_models",
|
| 14 |
"apply_formatting",
|
| 15 |
]
|
leaderboard/src/leaderboard/app.py
CHANGED
|
@@ -13,6 +13,7 @@ from dotenv import load_dotenv
|
|
| 13 |
from leaderboard.data_loader import (
|
| 14 |
load_benchmark_data,
|
| 15 |
get_unique_values,
|
|
|
|
| 16 |
)
|
| 17 |
from leaderboard.formatters import apply_formatting
|
| 18 |
|
|
@@ -37,13 +38,17 @@ def load_data() -> pd.DataFrame:
|
|
| 37 |
token=HF_TOKEN,
|
| 38 |
)
|
| 39 |
|
| 40 |
-
# Apply formatting to each row
|
| 41 |
-
if not df.empty:
|
| 42 |
-
df = df.apply(lambda row: pd.Series(apply_formatting(row.to_dict())), axis=1)
|
| 43 |
-
|
| 44 |
return df
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
def filter_data(
|
| 48 |
df: pd.DataFrame,
|
| 49 |
model_filter: str,
|
|
@@ -93,6 +98,7 @@ def create_leaderboard_ui():
|
|
| 93 |
|
| 94 |
# Load initial data
|
| 95 |
df = load_data()
|
|
|
|
| 96 |
|
| 97 |
with gr.Blocks(title="Transformers.js Benchmark Leaderboard") as demo:
|
| 98 |
gr.Markdown("# 🏆 Transformers.js Benchmark Leaderboard")
|
|
@@ -106,6 +112,24 @@ def create_leaderboard_ui():
|
|
| 106 |
"Please set the environment variable to load benchmark data."
|
| 107 |
)
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
with gr.Row():
|
| 110 |
refresh_btn = gr.Button("🔄 Refresh Data", variant="primary")
|
| 111 |
|
|
@@ -145,8 +169,8 @@ def create_leaderboard_ui():
|
|
| 145 |
)
|
| 146 |
|
| 147 |
results_table = gr.DataFrame(
|
| 148 |
-
value=
|
| 149 |
-
label="Benchmark Results",
|
| 150 |
interactive=False,
|
| 151 |
wrap=True,
|
| 152 |
)
|
|
@@ -166,8 +190,15 @@ def create_leaderboard_ui():
|
|
| 166 |
def update_data():
|
| 167 |
"""Reload data from HuggingFace."""
|
| 168 |
new_df = load_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
return (
|
| 170 |
-
|
|
|
|
| 171 |
gr.update(choices=get_unique_values(new_df, "task")),
|
| 172 |
gr.update(choices=get_unique_values(new_df, "platform")),
|
| 173 |
gr.update(choices=get_unique_values(new_df, "device")),
|
|
@@ -175,14 +206,18 @@ def create_leaderboard_ui():
|
|
| 175 |
gr.update(choices=get_unique_values(new_df, "dtype")),
|
| 176 |
)
|
| 177 |
|
| 178 |
-
def apply_filters(
|
| 179 |
"""Apply filters and return filtered DataFrame."""
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
# Refresh button updates data and resets filters
|
| 183 |
refresh_btn.click(
|
| 184 |
fn=update_data,
|
| 185 |
outputs=[
|
|
|
|
| 186 |
results_table,
|
| 187 |
task_filter,
|
| 188 |
platform_filter,
|
|
|
|
| 13 |
from leaderboard.data_loader import (
|
| 14 |
load_benchmark_data,
|
| 15 |
get_unique_values,
|
| 16 |
+
get_first_timer_friendly_models,
|
| 17 |
)
|
| 18 |
from leaderboard.formatters import apply_formatting
|
| 19 |
|
|
|
|
| 38 |
token=HF_TOKEN,
|
| 39 |
)
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
return df
|
| 42 |
|
| 43 |
|
| 44 |
+
def format_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
| 45 |
+
"""Apply formatting to dataframe for display."""
|
| 46 |
+
if df.empty:
|
| 47 |
+
return df
|
| 48 |
+
|
| 49 |
+
return df.apply(lambda row: pd.Series(apply_formatting(row.to_dict())), axis=1)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
def filter_data(
|
| 53 |
df: pd.DataFrame,
|
| 54 |
model_filter: str,
|
|
|
|
| 98 |
|
| 99 |
# Load initial data
|
| 100 |
df = load_data()
|
| 101 |
+
formatted_df = format_dataframe(df)
|
| 102 |
|
| 103 |
with gr.Blocks(title="Transformers.js Benchmark Leaderboard") as demo:
|
| 104 |
gr.Markdown("# 🏆 Transformers.js Benchmark Leaderboard")
|
|
|
|
| 112 |
"Please set the environment variable to load benchmark data."
|
| 113 |
)
|
| 114 |
|
| 115 |
+
# First-timer-friendly models section
|
| 116 |
+
with gr.Accordion("✨ First-Timer-Friendly Models", open=True):
|
| 117 |
+
gr.Markdown(
|
| 118 |
+
"These models are great for first-timers! They're popular, fast to load, "
|
| 119 |
+
"and quick to run. Perfect for getting started with Transformers.js.\n\n"
|
| 120 |
+
"**Showing top 3 models per task type.**"
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
first_timer_models = get_first_timer_friendly_models(df, limit_per_task=3)
|
| 124 |
+
formatted_first_timer = format_dataframe(first_timer_models)
|
| 125 |
+
|
| 126 |
+
first_timer_table = gr.DataFrame(
|
| 127 |
+
value=formatted_first_timer,
|
| 128 |
+
label="Top First-Timer-Friendly Models (by Task)",
|
| 129 |
+
interactive=False,
|
| 130 |
+
wrap=True,
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
with gr.Row():
|
| 134 |
refresh_btn = gr.Button("🔄 Refresh Data", variant="primary")
|
| 135 |
|
|
|
|
| 169 |
)
|
| 170 |
|
| 171 |
results_table = gr.DataFrame(
|
| 172 |
+
value=formatted_df,
|
| 173 |
+
label="All Benchmark Results",
|
| 174 |
interactive=False,
|
| 175 |
wrap=True,
|
| 176 |
)
|
|
|
|
| 190 |
def update_data():
|
| 191 |
"""Reload data from HuggingFace."""
|
| 192 |
new_df = load_data()
|
| 193 |
+
formatted_new_df = format_dataframe(new_df)
|
| 194 |
+
|
| 195 |
+
# Update first-timer-friendly models (3 per task)
|
| 196 |
+
new_first_timer = get_first_timer_friendly_models(new_df, limit_per_task=3)
|
| 197 |
+
formatted_new_first_timer = format_dataframe(new_first_timer)
|
| 198 |
+
|
| 199 |
return (
|
| 200 |
+
formatted_new_first_timer,
|
| 201 |
+
formatted_new_df,
|
| 202 |
gr.update(choices=get_unique_values(new_df, "task")),
|
| 203 |
gr.update(choices=get_unique_values(new_df, "platform")),
|
| 204 |
gr.update(choices=get_unique_values(new_df, "device")),
|
|
|
|
| 206 |
gr.update(choices=get_unique_values(new_df, "dtype")),
|
| 207 |
)
|
| 208 |
|
| 209 |
+
def apply_filters(formatted_df, model, task, platform, device, mode, dtype):
|
| 210 |
"""Apply filters and return filtered DataFrame."""
|
| 211 |
+
# Need to reload raw data to filter, then format
|
| 212 |
+
raw_df = load_data()
|
| 213 |
+
filtered = filter_data(raw_df, model, task, platform, device, mode, dtype)
|
| 214 |
+
return format_dataframe(filtered)
|
| 215 |
|
| 216 |
# Refresh button updates data and resets filters
|
| 217 |
refresh_btn.click(
|
| 218 |
fn=update_data,
|
| 219 |
outputs=[
|
| 220 |
+
first_timer_table,
|
| 221 |
results_table,
|
| 222 |
task_filter,
|
| 223 |
platform_filter,
|
leaderboard/src/leaderboard/data_loader.py
CHANGED
|
@@ -226,6 +226,109 @@ def enrich_with_hf_metadata(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 226 |
return df
|
| 227 |
|
| 228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
def get_unique_values(df: pd.DataFrame, column: str) -> List[str]:
|
| 230 |
"""Get unique values from a column for dropdown choices.
|
| 231 |
|
|
|
|
| 226 |
return df
|
| 227 |
|
| 228 |
|
| 229 |
+
def get_first_timer_friendly_models(df: pd.DataFrame, limit_per_task: int = 3) -> pd.DataFrame:
|
| 230 |
+
"""Identify first-timer-friendly models based on popularity and performance, grouped by task.
|
| 231 |
+
|
| 232 |
+
A model is considered first-timer-friendly if it:
|
| 233 |
+
- Has high downloads (popular)
|
| 234 |
+
- Has fast load times (easy to start)
|
| 235 |
+
- Has fast inference times (quick results)
|
| 236 |
+
- Successfully completed benchmarks
|
| 237 |
+
|
| 238 |
+
Args:
|
| 239 |
+
df: DataFrame containing benchmark results
|
| 240 |
+
limit_per_task: Maximum number of models to return per task
|
| 241 |
+
|
| 242 |
+
Returns:
|
| 243 |
+
DataFrame with top first-timer-friendly models per task
|
| 244 |
+
"""
|
| 245 |
+
if df.empty:
|
| 246 |
+
return pd.DataFrame()
|
| 247 |
+
|
| 248 |
+
# Filter only successful benchmarks
|
| 249 |
+
filtered = df[df["status"] == "completed"].copy() if "status" in df.columns else df.copy()
|
| 250 |
+
|
| 251 |
+
if filtered.empty:
|
| 252 |
+
return pd.DataFrame()
|
| 253 |
+
|
| 254 |
+
# Check if task column exists
|
| 255 |
+
if "task" not in filtered.columns:
|
| 256 |
+
logger.warning("Task column not found in dataframe")
|
| 257 |
+
return pd.DataFrame()
|
| 258 |
+
|
| 259 |
+
# Calculate first-timer-friendliness score per task
|
| 260 |
+
all_results = []
|
| 261 |
+
|
| 262 |
+
for task in filtered["task"].unique():
|
| 263 |
+
task_df = filtered[filtered["task"] == task].copy()
|
| 264 |
+
|
| 265 |
+
if task_df.empty:
|
| 266 |
+
continue
|
| 267 |
+
|
| 268 |
+
# Normalize metrics within this task (lower is better for times, higher is better for popularity)
|
| 269 |
+
|
| 270 |
+
# Downloads score (0-1, higher is better)
|
| 271 |
+
if "downloads" in task_df.columns:
|
| 272 |
+
max_downloads = task_df["downloads"].max()
|
| 273 |
+
task_df["downloads_score"] = task_df["downloads"] / max_downloads if max_downloads > 0 else 0
|
| 274 |
+
else:
|
| 275 |
+
task_df["downloads_score"] = 0
|
| 276 |
+
|
| 277 |
+
# Likes score (0-1, higher is better)
|
| 278 |
+
if "likes" in task_df.columns:
|
| 279 |
+
max_likes = task_df["likes"].max()
|
| 280 |
+
task_df["likes_score"] = task_df["likes"] / max_likes if max_likes > 0 else 0
|
| 281 |
+
else:
|
| 282 |
+
task_df["likes_score"] = 0
|
| 283 |
+
|
| 284 |
+
# Load time score (0-1, lower time is better)
|
| 285 |
+
if "load_ms_p50" in task_df.columns:
|
| 286 |
+
max_load = task_df["load_ms_p50"].max()
|
| 287 |
+
task_df["load_score"] = 1 - (task_df["load_ms_p50"] / max_load) if max_load > 0 else 0
|
| 288 |
+
else:
|
| 289 |
+
task_df["load_score"] = 0
|
| 290 |
+
|
| 291 |
+
# Inference time score (0-1, lower time is better)
|
| 292 |
+
if "first_infer_ms_p50" in task_df.columns:
|
| 293 |
+
max_infer = task_df["first_infer_ms_p50"].max()
|
| 294 |
+
task_df["infer_score"] = 1 - (task_df["first_infer_ms_p50"] / max_infer) if max_infer > 0 else 0
|
| 295 |
+
else:
|
| 296 |
+
task_df["infer_score"] = 0
|
| 297 |
+
|
| 298 |
+
# Calculate weighted first-timer-friendliness score
|
| 299 |
+
# Weights: popularity (40%), load time (30%), inference time (30%)
|
| 300 |
+
task_df["first_timer_score"] = (
|
| 301 |
+
(task_df["downloads_score"] * 0.25) +
|
| 302 |
+
(task_df["likes_score"] * 0.15) +
|
| 303 |
+
(task_df["load_score"] * 0.30) +
|
| 304 |
+
(task_df["infer_score"] * 0.30)
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
# Group by model and take best score for each model within this task
|
| 308 |
+
best_per_model = task_df.loc[task_df.groupby("modelId")["first_timer_score"].idxmax()]
|
| 309 |
+
|
| 310 |
+
# Sort by first-timer score and take top N for this task
|
| 311 |
+
top_for_task = best_per_model.sort_values("first_timer_score", ascending=False).head(limit_per_task)
|
| 312 |
+
|
| 313 |
+
# Drop intermediate scoring columns
|
| 314 |
+
score_cols = ["downloads_score", "likes_score", "load_score", "infer_score", "first_timer_score"]
|
| 315 |
+
top_for_task = top_for_task.drop(columns=[col for col in score_cols if col in top_for_task.columns])
|
| 316 |
+
|
| 317 |
+
all_results.append(top_for_task)
|
| 318 |
+
|
| 319 |
+
if not all_results:
|
| 320 |
+
return pd.DataFrame()
|
| 321 |
+
|
| 322 |
+
# Combine all results
|
| 323 |
+
result = pd.concat(all_results, ignore_index=True)
|
| 324 |
+
|
| 325 |
+
# Sort by task name for better organization
|
| 326 |
+
if "task" in result.columns:
|
| 327 |
+
result = result.sort_values("task")
|
| 328 |
+
|
| 329 |
+
return result
|
| 330 |
+
|
| 331 |
+
|
| 332 |
def get_unique_values(df: pd.DataFrame, column: str) -> List[str]:
|
| 333 |
"""Get unique values from a column for dropdown choices.
|
| 334 |
|