Spaces:
Running
Running
Init commit
Browse files- .gitattributes +1 -0
- app.py +45 -0
- images/Kobe_coffee.jpg +0 -0
- images/basketball.jpg +0 -0
- models/__init__.py +1 -0
- models/mambaout.py +313 -0
- requirements.txt +1 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.DS_Store
|
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import requests
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from timm.data import create_transform
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Prepare the model.
|
| 9 |
+
import models
|
| 10 |
+
model = models.mambaout_femto(pretrained=True) # can change different model name
|
| 11 |
+
model.eval()
|
| 12 |
+
|
| 13 |
+
# Prepare the transform.
|
| 14 |
+
transform = create_transform(input_size=224, crop_pct=model.default_cfg['crop_pct'])
|
| 15 |
+
|
| 16 |
+
# Download human-readable labels for ImageNet.
|
| 17 |
+
response = requests.get("https://git.io/JJkYN")
|
| 18 |
+
labels = response.text.split("\n")
|
| 19 |
+
|
| 20 |
+
def predict(inp):
|
| 21 |
+
inp = transform(inp).unsqueeze(0)
|
| 22 |
+
|
| 23 |
+
with torch.no_grad():
|
| 24 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
| 25 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
| 26 |
+
return confidences
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
title="MambaOut: Do We Really Need Mamba for Vision?"
|
| 30 |
+
description="Gradio demo for MambaOut model (Femto) proposed by [MambaOut: Do We Really Need Mamba for Vision?](https://arxiv.org/abs/2405.07992). To use it simply upload your image or click on one of the examples to load them. Read more at [arXiv](https://arxiv.org/abs/2405.07992) and [GitHub](https://github.com/yuweihao/MambaOut)."
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
gr.Interface(title=title,
|
| 34 |
+
description=description,
|
| 35 |
+
fn=predict,
|
| 36 |
+
inputs=gr.Image(type="pil"),
|
| 37 |
+
outputs=gr.Label(num_top_classes=3),
|
| 38 |
+
examples=["images/basketball.jpg", "images/Kobe_coffee.jpg"]).launch()
|
| 39 |
+
|
| 40 |
+
# Basketball image credit: https://www.sportsonline.com.au/products/kobe-bryant-hand-signed-basketball-signed-in-silver
|
| 41 |
+
# Kobe coffee image credit: https://aroundsaddleworth.co.uk/wp-content/uploads/2020/01/DSC_0177-scaled.jpg
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
images/Kobe_coffee.jpg
ADDED
|
images/basketball.jpg
ADDED
|
models/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .mambaout import *
|
models/mambaout.py
ADDED
|
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MambaOut models for image classification.
|
| 3 |
+
Some implementations are modified from:
|
| 4 |
+
timm (https://github.com/rwightman/pytorch-image-models),
|
| 5 |
+
MetaFormer (https://github.com/sail-sg/metaformer),
|
| 6 |
+
InceptionNeXt (https://github.com/sail-sg/inceptionnext)
|
| 7 |
+
"""
|
| 8 |
+
from functools import partial
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from timm.models.layers import trunc_normal_, DropPath
|
| 13 |
+
from timm.models.registry import register_model
|
| 14 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def _cfg(url='', **kwargs):
|
| 18 |
+
return {
|
| 19 |
+
'url': url,
|
| 20 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
| 21 |
+
'crop_pct': 1.0, 'interpolation': 'bicubic',
|
| 22 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
|
| 23 |
+
**kwargs
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
default_cfgs = {
|
| 28 |
+
'mambaout_femto': _cfg(
|
| 29 |
+
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_femto.pth'),
|
| 30 |
+
'mambaout_tiny': _cfg(
|
| 31 |
+
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_tiny.pth'),
|
| 32 |
+
'mambaout_small': _cfg(
|
| 33 |
+
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_small.pth'),
|
| 34 |
+
'mambaout_base': _cfg(
|
| 35 |
+
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_base.pth'),
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class StemLayer(nn.Module):
|
| 40 |
+
r""" Code modified from InternImage:
|
| 41 |
+
https://github.com/OpenGVLab/InternImage
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
def __init__(self,
|
| 45 |
+
in_channels=3,
|
| 46 |
+
out_channels=96,
|
| 47 |
+
act_layer=nn.GELU,
|
| 48 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6)):
|
| 49 |
+
super().__init__()
|
| 50 |
+
self.conv1 = nn.Conv2d(in_channels,
|
| 51 |
+
out_channels // 2,
|
| 52 |
+
kernel_size=3,
|
| 53 |
+
stride=2,
|
| 54 |
+
padding=1)
|
| 55 |
+
self.norm1 = norm_layer(out_channels // 2)
|
| 56 |
+
self.act = act_layer()
|
| 57 |
+
self.conv2 = nn.Conv2d(out_channels // 2,
|
| 58 |
+
out_channels,
|
| 59 |
+
kernel_size=3,
|
| 60 |
+
stride=2,
|
| 61 |
+
padding=1)
|
| 62 |
+
self.norm2 = norm_layer(out_channels)
|
| 63 |
+
|
| 64 |
+
def forward(self, x):
|
| 65 |
+
x = self.conv1(x)
|
| 66 |
+
x = x.permute(0, 2, 3, 1)
|
| 67 |
+
x = self.norm1(x)
|
| 68 |
+
x = x.permute(0, 3, 1, 2)
|
| 69 |
+
x = self.act(x)
|
| 70 |
+
x = self.conv2(x)
|
| 71 |
+
x = x.permute(0, 2, 3, 1)
|
| 72 |
+
x = self.norm2(x)
|
| 73 |
+
return x
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class DownsampleLayer(nn.Module):
|
| 77 |
+
r""" Code modified from InternImage:
|
| 78 |
+
https://github.com/OpenGVLab/InternImage
|
| 79 |
+
"""
|
| 80 |
+
def __init__(self, in_channels=96, out_channels=198, norm_layer=partial(nn.LayerNorm, eps=1e-6)):
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.conv = nn.Conv2d(in_channels,
|
| 83 |
+
out_channels,
|
| 84 |
+
kernel_size=3,
|
| 85 |
+
stride=2,
|
| 86 |
+
padding=1)
|
| 87 |
+
self.norm = norm_layer(out_channels)
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
x = self.conv(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
|
| 91 |
+
x = self.norm(x)
|
| 92 |
+
return x
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class MlpHead(nn.Module):
|
| 96 |
+
""" MLP classification head
|
| 97 |
+
"""
|
| 98 |
+
def __init__(self, dim, num_classes=1000, act_layer=nn.GELU, mlp_ratio=4,
|
| 99 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), head_dropout=0., bias=True):
|
| 100 |
+
super().__init__()
|
| 101 |
+
hidden_features = int(mlp_ratio * dim)
|
| 102 |
+
self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
|
| 103 |
+
self.act = act_layer()
|
| 104 |
+
self.norm = norm_layer(hidden_features)
|
| 105 |
+
self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
|
| 106 |
+
self.head_dropout = nn.Dropout(head_dropout)
|
| 107 |
+
|
| 108 |
+
def forward(self, x):
|
| 109 |
+
x = self.fc1(x)
|
| 110 |
+
x = self.act(x)
|
| 111 |
+
x = self.norm(x)
|
| 112 |
+
x = self.head_dropout(x)
|
| 113 |
+
x = self.fc2(x)
|
| 114 |
+
return x
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class GatedCNNBlock(nn.Module):
|
| 118 |
+
r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083
|
| 119 |
+
Args:
|
| 120 |
+
conv_ratio: control the number of channels to conduct depthwise convolution.
|
| 121 |
+
Conduct convolution on partial channels can improve paraitcal efficiency.
|
| 122 |
+
The idea of partical channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and
|
| 123 |
+
also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667)
|
| 124 |
+
"""
|
| 125 |
+
def __init__(self, dim, expension_ratio=8/3, kernel_size=7, conv_ratio=1.0,
|
| 126 |
+
norm_layer=partial(nn.LayerNorm,eps=1e-6),
|
| 127 |
+
act_layer=nn.GELU,
|
| 128 |
+
drop_path=0.,
|
| 129 |
+
**kwargs):
|
| 130 |
+
super().__init__()
|
| 131 |
+
self.norm = norm_layer(dim)
|
| 132 |
+
hidden = int(expension_ratio * dim)
|
| 133 |
+
self.fc1 = nn.Linear(dim, hidden * 2)
|
| 134 |
+
self.act = act_layer()
|
| 135 |
+
conv_channels = int(conv_ratio * dim)
|
| 136 |
+
self.split_indices = (hidden, hidden - conv_channels, conv_channels)
|
| 137 |
+
self.conv = nn.Conv2d(conv_channels, conv_channels, kernel_size=kernel_size, padding=kernel_size//2, groups=conv_channels)
|
| 138 |
+
self.fc2 = nn.Linear(hidden, dim)
|
| 139 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 140 |
+
|
| 141 |
+
def forward(self, x):
|
| 142 |
+
shortcut = x # [B, H, W, C]
|
| 143 |
+
x = self.norm(x)
|
| 144 |
+
g, i, c = torch.split(self.fc1(x), self.split_indices, dim=-1)
|
| 145 |
+
c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W]
|
| 146 |
+
c = self.conv(c)
|
| 147 |
+
c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C]
|
| 148 |
+
x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1))
|
| 149 |
+
x = self.drop_path(x)
|
| 150 |
+
return x + shortcut
|
| 151 |
+
|
| 152 |
+
r"""
|
| 153 |
+
downsampling (stem) for the first stage is two layer of conv with k3, s2 and p1
|
| 154 |
+
downsamplings for the last 3 stages is a layer of conv with k3, s2 and p1
|
| 155 |
+
DOWNSAMPLE_LAYERS_FOUR_STAGES format: [Downsampling, Downsampling, Downsampling, Downsampling]
|
| 156 |
+
use `partial` to specify some arguments
|
| 157 |
+
"""
|
| 158 |
+
DOWNSAMPLE_LAYERS_FOUR_STAGES = [StemLayer] + [DownsampleLayer]*3
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class MambaOut(nn.Module):
|
| 162 |
+
r""" MetaFormer
|
| 163 |
+
A PyTorch impl of : `MetaFormer Baselines for Vision` -
|
| 164 |
+
https://arxiv.org/abs/2210.13452
|
| 165 |
+
|
| 166 |
+
Args:
|
| 167 |
+
in_chans (int): Number of input image channels. Default: 3.
|
| 168 |
+
num_classes (int): Number of classes for classification head. Default: 1000.
|
| 169 |
+
depths (list or tuple): Number of blocks at each stage. Default: [3, 3, 9, 3].
|
| 170 |
+
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 576].
|
| 171 |
+
downsample_layers: (list or tuple): Downsampling layers before each stage.
|
| 172 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
| 173 |
+
output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6).
|
| 174 |
+
head_fn: classification head. Default: nn.Linear.
|
| 175 |
+
head_dropout (float): dropout for MLP classifier. Default: 0.
|
| 176 |
+
"""
|
| 177 |
+
def __init__(self, in_chans=3, num_classes=1000,
|
| 178 |
+
depths=[3, 3, 9, 3],
|
| 179 |
+
dims=[96, 192, 384, 576],
|
| 180 |
+
downsample_layers=DOWNSAMPLE_LAYERS_FOUR_STAGES,
|
| 181 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
| 182 |
+
act_layer=nn.GELU,
|
| 183 |
+
conv_ratio=1.0,
|
| 184 |
+
kernel_size=7,
|
| 185 |
+
drop_path_rate=0.,
|
| 186 |
+
output_norm=partial(nn.LayerNorm, eps=1e-6),
|
| 187 |
+
head_fn=MlpHead,
|
| 188 |
+
head_dropout=0.0,
|
| 189 |
+
**kwargs,
|
| 190 |
+
):
|
| 191 |
+
super().__init__()
|
| 192 |
+
self.num_classes = num_classes
|
| 193 |
+
|
| 194 |
+
if not isinstance(depths, (list, tuple)):
|
| 195 |
+
depths = [depths] # it means the model has only one stage
|
| 196 |
+
if not isinstance(dims, (list, tuple)):
|
| 197 |
+
dims = [dims]
|
| 198 |
+
|
| 199 |
+
num_stage = len(depths)
|
| 200 |
+
self.num_stage = num_stage
|
| 201 |
+
|
| 202 |
+
if not isinstance(downsample_layers, (list, tuple)):
|
| 203 |
+
downsample_layers = [downsample_layers] * num_stage
|
| 204 |
+
down_dims = [in_chans] + dims
|
| 205 |
+
self.downsample_layers = nn.ModuleList(
|
| 206 |
+
[downsample_layers[i](down_dims[i], down_dims[i+1]) for i in range(num_stage)]
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
| 210 |
+
|
| 211 |
+
self.stages = nn.ModuleList()
|
| 212 |
+
cur = 0
|
| 213 |
+
for i in range(num_stage):
|
| 214 |
+
stage = nn.Sequential(
|
| 215 |
+
*[GatedCNNBlock(dim=dims[i],
|
| 216 |
+
norm_layer=norm_layer,
|
| 217 |
+
act_layer=act_layer,
|
| 218 |
+
kernel_size=kernel_size,
|
| 219 |
+
conv_ratio=conv_ratio,
|
| 220 |
+
drop_path=dp_rates[cur + j],
|
| 221 |
+
) for j in range(depths[i])]
|
| 222 |
+
)
|
| 223 |
+
self.stages.append(stage)
|
| 224 |
+
cur += depths[i]
|
| 225 |
+
|
| 226 |
+
self.norm = output_norm(dims[-1])
|
| 227 |
+
|
| 228 |
+
if head_dropout > 0.0:
|
| 229 |
+
self.head = head_fn(dims[-1], num_classes, head_dropout=head_dropout)
|
| 230 |
+
else:
|
| 231 |
+
self.head = head_fn(dims[-1], num_classes)
|
| 232 |
+
|
| 233 |
+
self.apply(self._init_weights)
|
| 234 |
+
|
| 235 |
+
def _init_weights(self, m):
|
| 236 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
| 237 |
+
trunc_normal_(m.weight, std=.02)
|
| 238 |
+
if m.bias is not None:
|
| 239 |
+
nn.init.constant_(m.bias, 0)
|
| 240 |
+
|
| 241 |
+
@torch.jit.ignore
|
| 242 |
+
def no_weight_decay(self):
|
| 243 |
+
return {'norm'}
|
| 244 |
+
|
| 245 |
+
def forward_features(self, x):
|
| 246 |
+
for i in range(self.num_stage):
|
| 247 |
+
x = self.downsample_layers[i](x)
|
| 248 |
+
x = self.stages[i](x)
|
| 249 |
+
return self.norm(x.mean([1, 2])) # (B, H, W, C) -> (B, C)
|
| 250 |
+
|
| 251 |
+
def forward(self, x):
|
| 252 |
+
x = self.forward_features(x)
|
| 253 |
+
x = self.head(x)
|
| 254 |
+
return x
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
###############################################################################
|
| 259 |
+
# a series of MambaOut models
|
| 260 |
+
@register_model
|
| 261 |
+
def mambaout_femto(pretrained=False, **kwargs):
|
| 262 |
+
model = MambaOut(
|
| 263 |
+
depths=[3, 3, 9, 3],
|
| 264 |
+
dims=[48, 96, 192, 288],
|
| 265 |
+
**kwargs)
|
| 266 |
+
model.default_cfg = default_cfgs['mambaout_femto']
|
| 267 |
+
if pretrained:
|
| 268 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
| 269 |
+
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
|
| 270 |
+
model.load_state_dict(state_dict)
|
| 271 |
+
return model
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@register_model
|
| 275 |
+
def mambaout_tiny(pretrained=False, **kwargs):
|
| 276 |
+
model = MambaOut(
|
| 277 |
+
depths=[3, 3, 9, 3],
|
| 278 |
+
dims=[96, 192, 384, 576],
|
| 279 |
+
**kwargs)
|
| 280 |
+
model.default_cfg = default_cfgs['mambaout_tiny']
|
| 281 |
+
if pretrained:
|
| 282 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
| 283 |
+
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
|
| 284 |
+
model.load_state_dict(state_dict)
|
| 285 |
+
return model
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
@register_model
|
| 289 |
+
def mambaout_small(pretrained=False, **kwargs):
|
| 290 |
+
model = MambaOut(
|
| 291 |
+
depths=[3, 4, 27, 3],
|
| 292 |
+
dims=[96, 192, 384, 576],
|
| 293 |
+
**kwargs)
|
| 294 |
+
model.default_cfg = default_cfgs['mambaout_small']
|
| 295 |
+
if pretrained:
|
| 296 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
| 297 |
+
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
|
| 298 |
+
model.load_state_dict(state_dict)
|
| 299 |
+
return model
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
@register_model
|
| 303 |
+
def mambaout_base(pretrained=False, **kwargs):
|
| 304 |
+
model = MambaOut(
|
| 305 |
+
depths=[3, 4, 27, 3],
|
| 306 |
+
dims=[128, 256, 512, 768],
|
| 307 |
+
**kwargs)
|
| 308 |
+
model.default_cfg = default_cfgs['mambaout_base']
|
| 309 |
+
if pretrained:
|
| 310 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
| 311 |
+
url= model.default_cfg['url'], map_location="cpu", check_hash=True)
|
| 312 |
+
model.load_state_dict(state_dict)
|
| 313 |
+
return model
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
timm==0.6.11
|