Spaces:
Running
Running
vidhanm
commited on
Commit
·
ff119bb
1
Parent(s):
cf3bafe
was working in logs
Browse files- Dockerfile +13 -22
- app.py +186 -0
- requirements.txt +2 -0
Dockerfile
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
FROM python:3.9-slim
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
|
@@ -7,36 +7,27 @@ RUN apt-get update && apt-get install -y git && rm -rf /var/lib/apt/lists/*
|
|
| 7 |
|
| 8 |
# Copy requirements and install
|
| 9 |
COPY requirements.txt requirements.txt
|
| 10 |
-
RUN echo "DEBUG: Installing packages from requirements.txt" && \
|
| 11 |
pip install --no-cache-dir -r requirements.txt && \
|
| 12 |
echo "DEBUG: Finished installing packages."
|
| 13 |
|
| 14 |
-
# Clone the nanoVLM repository
|
| 15 |
-
# This also ensures the 'models' module is available for VisionLanguageModel import
|
| 16 |
RUN echo "DEBUG: Cloning huggingface/nanoVLM repository..." && \
|
| 17 |
git clone https://github.com/huggingface/nanoVLM.git /app/nanoVLM && \
|
| 18 |
echo "DEBUG: nanoVLM repository cloned to /app/nanoVLM."
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
# You need to create a simple 'test_image.jpg' and add it to the root of your Space repo.
|
| 22 |
-
COPY ./test_image.jpg /app/test_image.jpg
|
| 23 |
-
RUN if [ ! -f /app/test_image.jpg ]; then echo "ERROR: test_image.jpg not found!"; exit 1; fi
|
| 24 |
-
|
| 25 |
-
# Set Python path to include the nanoVLM models directory, so `from models...` works
|
| 26 |
ENV PYTHONPATH="/app/nanoVLM:${PYTHONPATH}"
|
| 27 |
-
|
| 28 |
-
# Define a writable cache directory for Hugging Face downloads
|
| 29 |
ENV HF_HOME=/app/.cache/huggingface
|
| 30 |
|
| 31 |
-
# Create cache directory
|
| 32 |
RUN mkdir -p $HF_HOME && chmod -R 777 $HF_HOME
|
| 33 |
|
| 34 |
-
#
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
"--max_new_tokens", "50"]
|
|
|
|
| 1 |
+
FROM python:3.9-slim # Or your preferred Python version
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
|
|
|
| 7 |
|
| 8 |
# Copy requirements and install
|
| 9 |
COPY requirements.txt requirements.txt
|
| 10 |
+
RUN echo "DEBUG: Installing packages from requirements.txt for Gradio app" && \
|
| 11 |
pip install --no-cache-dir -r requirements.txt && \
|
| 12 |
echo "DEBUG: Finished installing packages."
|
| 13 |
|
| 14 |
+
# Clone the nanoVLM repository
|
|
|
|
| 15 |
RUN echo "DEBUG: Cloning huggingface/nanoVLM repository..." && \
|
| 16 |
git clone https://github.com/huggingface/nanoVLM.git /app/nanoVLM && \
|
| 17 |
echo "DEBUG: nanoVLM repository cloned to /app/nanoVLM."
|
| 18 |
|
| 19 |
+
# Set Python path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
ENV PYTHONPATH="/app/nanoVLM:${PYTHONPATH}"
|
|
|
|
|
|
|
| 21 |
ENV HF_HOME=/app/.cache/huggingface
|
| 22 |
|
| 23 |
+
# Create cache directory
|
| 24 |
RUN mkdir -p $HF_HOME && chmod -R 777 $HF_HOME
|
| 25 |
|
| 26 |
+
# Copy your Gradio application
|
| 27 |
+
COPY app.py app.py
|
| 28 |
+
|
| 29 |
+
# Expose the port Gradio runs on
|
| 30 |
+
EXPOSE 7860
|
| 31 |
+
|
| 32 |
+
# Command to run the Gradio application
|
| 33 |
+
CMD ["python", "-u", "app.py"]
|
|
|
app.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import os
|
| 3 |
+
from typing import Optional
|
| 4 |
+
from PIL import Image as PILImage
|
| 5 |
+
|
| 6 |
+
# Add the cloned nanoVLM directory to Python's system path
|
| 7 |
+
NANOVLM_REPO_PATH = "/app/nanoVLM" # This path is where your Dockerfile clones huggingface/nanoVLM
|
| 8 |
+
if NANOVLM_REPO_PATH not in sys.path:
|
| 9 |
+
print(f"DEBUG: Adding {NANOVLM_REPO_PATH} to sys.path")
|
| 10 |
+
sys.path.insert(0, NANOVLM_REPO_PATH)
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import torch
|
| 14 |
+
from transformers import AutoProcessor # Using AutoProcessor as in the successful generate.py
|
| 15 |
+
|
| 16 |
+
# Import the custom VisionLanguageModel class
|
| 17 |
+
VisionLanguageModel = None
|
| 18 |
+
try:
|
| 19 |
+
print("DEBUG: Attempting to import VisionLanguageModel from models.vision_language_model")
|
| 20 |
+
from models.vision_language_model import VisionLanguageModel
|
| 21 |
+
print("DEBUG: Successfully imported VisionLanguageModel.")
|
| 22 |
+
except ImportError as e:
|
| 23 |
+
print(f"CRITICAL ERROR: Importing VisionLanguageModel failed: {e}")
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"CRITICAL ERROR: An unexpected error occurred during VisionLanguageModel import: {e}")
|
| 26 |
+
|
| 27 |
+
# --- Device Setup ---
|
| 28 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
+
print(f"DEBUG: Using device: {device}")
|
| 30 |
+
|
| 31 |
+
# --- Configuration ---
|
| 32 |
+
model_repo_id = "lusxvr/nanoVLM-222M" # Used for both processor and model weights
|
| 33 |
+
print(f"DEBUG: Model Repository ID for processor and model: {model_repo_id}")
|
| 34 |
+
|
| 35 |
+
# --- Initialize ---
|
| 36 |
+
processor = None
|
| 37 |
+
model = None
|
| 38 |
+
|
| 39 |
+
if VisionLanguageModel: # Only proceed if custom model class was imported
|
| 40 |
+
try:
|
| 41 |
+
# Load processor using AutoProcessor, mirroring generate.py
|
| 42 |
+
print(f"DEBUG: Loading processor using AutoProcessor.from_pretrained('{model_repo_id}')")
|
| 43 |
+
# generate.py doesn't explicitly use trust_remote_code=True for processor,
|
| 44 |
+
# but it might be implicitly active in your local transformers or not needed if processor_config is clear.
|
| 45 |
+
# Let's try without it first for AutoProcessor, then add if "Unrecognized model" for processor reappears.
|
| 46 |
+
processor = AutoProcessor.from_pretrained(model_repo_id) # Try without TRC first for processor
|
| 47 |
+
print(f"DEBUG: AutoProcessor loaded: {type(processor)}")
|
| 48 |
+
|
| 49 |
+
# Ensure tokenizer has pad_token set if it's GPT-2 based (AutoProcessor should handle a tokenizer component)
|
| 50 |
+
if hasattr(processor, 'tokenizer') and processor.tokenizer is not None:
|
| 51 |
+
current_tokenizer = processor.tokenizer
|
| 52 |
+
if getattr(current_tokenizer, 'pad_token', None) is None and hasattr(current_tokenizer, 'eos_token'):
|
| 53 |
+
current_tokenizer.pad_token = current_tokenizer.eos_token
|
| 54 |
+
print(f"DEBUG: Set processor.tokenizer.pad_token to eos_token (ID: {current_tokenizer.eos_token_id})")
|
| 55 |
+
else:
|
| 56 |
+
print("WARN: Processor does not have a 'tokenizer' attribute or it's None. Cannot set pad_token.")
|
| 57 |
+
|
| 58 |
+
# Load model using VisionLanguageModel.from_pretrained, mirroring generate.py
|
| 59 |
+
print(f"DEBUG: Loading model VisionLanguageModel.from_pretrained('{model_repo_id}')")
|
| 60 |
+
# The custom VLM.from_pretrained doesn't take trust_remote_code
|
| 61 |
+
model = VisionLanguageModel.from_pretrained(model_repo_id).to(device)
|
| 62 |
+
print(f"DEBUG: VisionLanguageModel loaded: {type(model)}")
|
| 63 |
+
model.eval()
|
| 64 |
+
print("DEBUG: Model set to eval() mode.")
|
| 65 |
+
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"CRITICAL ERROR loading model or processor: {e}")
|
| 68 |
+
import traceback
|
| 69 |
+
traceback.print_exc()
|
| 70 |
+
processor = None; model = None # Ensure they are None if loading fails
|
| 71 |
+
else:
|
| 72 |
+
print("CRITICAL ERROR: VisionLanguageModel class not imported. Cannot load model.")
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# --- Text Generation Function ---
|
| 76 |
+
def generate_text_for_image(image_input_pil: Optional[PILImage.Image], prompt_input_str: Optional[str]) -> str:
|
| 77 |
+
print(f"DEBUG (generate_text_for_image): Received prompt: '{prompt_input_str}'")
|
| 78 |
+
if model is None or processor is None:
|
| 79 |
+
print("ERROR (generate_text_for_image): Model or processor not loaded.")
|
| 80 |
+
return "Error: Model or processor not loaded. Please check the application logs."
|
| 81 |
+
if image_input_pil is None:
|
| 82 |
+
print("WARN (generate_text_for_image): No image uploaded.")
|
| 83 |
+
return "Please upload an image."
|
| 84 |
+
if not prompt_input_str: # Check for empty or None prompt
|
| 85 |
+
print("WARN (generate_text_for_image): No prompt provided.")
|
| 86 |
+
return "Please provide a prompt."
|
| 87 |
+
|
| 88 |
+
try:
|
| 89 |
+
current_pil_image = image_input_pil
|
| 90 |
+
if not isinstance(current_pil_image, PILImage.Image): # Should be PIL from Gradio's type="pil"
|
| 91 |
+
print(f"WARN (generate_text_for_image): Input image not PIL, type: {type(current_pil_image)}. Converting.")
|
| 92 |
+
current_pil_image = PILImage.fromarray(current_pil_image)
|
| 93 |
+
if current_pil_image.mode != "RGB":
|
| 94 |
+
print(f"DEBUG (generate_text_for_image): Converting image from {current_pil_image.mode} to RGB.")
|
| 95 |
+
current_pil_image = current_pil_image.convert("RGB")
|
| 96 |
+
print(f"DEBUG (generate_text_for_image): Image prepped - size: {current_pil_image.size}, mode: {current_pil_image.mode}")
|
| 97 |
+
|
| 98 |
+
# Prepare inputs using the AutoProcessor, as in generate.py
|
| 99 |
+
print("DEBUG (generate_text_for_image): Processing inputs with AutoProcessor...")
|
| 100 |
+
inputs = processor(
|
| 101 |
+
text=[prompt_input_str], images=current_pil_image, return_tensors="pt"
|
| 102 |
+
).to(device)
|
| 103 |
+
print(f"DEBUG (generate_text_for_image): Inputs from AutoProcessor - keys: {inputs.keys()}")
|
| 104 |
+
print(f"DEBUG (generate_text_for_image): input_ids shape: {inputs['input_ids'].shape}, values: {inputs['input_ids']}")
|
| 105 |
+
print(f"DEBUG (generate_text_for_image): pixel_values shape: {inputs['pixel_values'].shape}")
|
| 106 |
+
|
| 107 |
+
attention_mask = inputs.get('attention_mask')
|
| 108 |
+
if attention_mask is None: # Should be provided by AutoProcessor
|
| 109 |
+
print("WARN (generate_text_for_image): attention_mask not in processor output. Creating default.")
|
| 110 |
+
attention_mask = torch.ones_like(inputs['input_ids']).to(device)
|
| 111 |
+
print(f"DEBUG (generate_text_for_image): attention_mask shape: {attention_mask.shape}")
|
| 112 |
+
|
| 113 |
+
print("DEBUG (generate_text_for_image): Calling model.generate...")
|
| 114 |
+
# Signature for nanoVLM's generate: (self, input_ids, image, attention_mask, max_new_tokens, ...)
|
| 115 |
+
generated_ids_tensor = model.generate(
|
| 116 |
+
inputs['input_ids'],
|
| 117 |
+
inputs['pixel_values'], # This is the 'image' argument for the model's generate method
|
| 118 |
+
attention_mask,
|
| 119 |
+
max_new_tokens=50, # Consistent with successful generate.py test
|
| 120 |
+
temperature=0.7, # From generate.py defaults (or adjust as preferred)
|
| 121 |
+
top_k=50, # From generate.py defaults (or adjust as preferred)
|
| 122 |
+
# greedy=False is default in nanoVLM's generate
|
| 123 |
+
)
|
| 124 |
+
print(f"DEBUG (generate_text_for_image): Raw generated_ids: {generated_ids_tensor}")
|
| 125 |
+
|
| 126 |
+
# Use processor.batch_decode, as in generate.py
|
| 127 |
+
generated_text_list = processor.batch_decode(generated_ids_tensor, skip_special_tokens=True)
|
| 128 |
+
print(f"DEBUG (generate_text_for_image): Decoded text list: {generated_text_list}")
|
| 129 |
+
generated_text_str = generated_text_list[0] if generated_text_list else ""
|
| 130 |
+
|
| 131 |
+
# Optional: Clean up prompt if echoed
|
| 132 |
+
cleaned_text_str = generated_text_str
|
| 133 |
+
if prompt_input_str and generated_text_str.startswith(prompt_input_str):
|
| 134 |
+
cleaned_text_str = generated_text_str[len(prompt_input_str):].lstrip(" ,.:")
|
| 135 |
+
print(f"DEBUG (generate_text_for_image): Final cleaned text: '{cleaned_text_str}'")
|
| 136 |
+
return cleaned_text_str.strip()
|
| 137 |
+
|
| 138 |
+
except Exception as e:
|
| 139 |
+
print(f"CRITICAL ERROR during generation: {e}")
|
| 140 |
+
import traceback
|
| 141 |
+
traceback.print_exc()
|
| 142 |
+
return f"Error during generation: {str(e)}. Check logs."
|
| 143 |
+
|
| 144 |
+
# --- Gradio Interface ---
|
| 145 |
+
description_md = """
|
| 146 |
+
## nanoVLM-222M Interactive Demo
|
| 147 |
+
Upload an image and type a prompt to get a description or answer from the model.
|
| 148 |
+
This Space uses the `lusxvr/nanoVLM-222M` model weights with the `huggingface/nanoVLM` model code.
|
| 149 |
+
"""
|
| 150 |
+
iface = None
|
| 151 |
+
# Only define the interface if the model and processor loaded successfully
|
| 152 |
+
if VisionLanguageModel and model and processor:
|
| 153 |
+
try:
|
| 154 |
+
print("DEBUG: Defining Gradio interface...")
|
| 155 |
+
iface = gr.Interface(
|
| 156 |
+
fn=generate_text_for_image,
|
| 157 |
+
inputs=[
|
| 158 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 159 |
+
gr.Textbox(label="Your Prompt / Question", info="e.g., 'describe this image in detail'")
|
| 160 |
+
],
|
| 161 |
+
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
|
| 162 |
+
title="nanoVLM-222M Demo",
|
| 163 |
+
description=description_md,
|
| 164 |
+
allow_flagging="never" # No examples or caching for now to keep it simple
|
| 165 |
+
)
|
| 166 |
+
print("DEBUG: Gradio interface defined successfully.")
|
| 167 |
+
except Exception as e:
|
| 168 |
+
print(f"CRITICAL ERROR defining Gradio interface: {e}")
|
| 169 |
+
import traceback; traceback.print_exc()
|
| 170 |
+
else:
|
| 171 |
+
print("WARN: Model and/or processor did not load. Gradio interface will not be created.")
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
# --- Launch Gradio App ---
|
| 175 |
+
if __name__ == "__main__":
|
| 176 |
+
print("DEBUG: Entered __main__ block for Gradio launch.")
|
| 177 |
+
if iface is not None:
|
| 178 |
+
print("DEBUG: Attempting to launch Gradio interface...")
|
| 179 |
+
try:
|
| 180 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
| 181 |
+
print("DEBUG: Gradio launch command issued.")
|
| 182 |
+
except Exception as e:
|
| 183 |
+
print(f"CRITICAL ERROR launching Gradio interface: {e}")
|
| 184 |
+
import traceback; traceback.print_exc()
|
| 185 |
+
else:
|
| 186 |
+
print("CRITICAL ERROR: Gradio interface (iface) is None or not defined due to loading errors. Cannot launch.")
|
requirements.txt
CHANGED
|
@@ -16,3 +16,5 @@ sentencepiece # Often a dependency for tokenizers
|
|
| 16 |
|
| 17 |
# NO Gradio needed for this test
|
| 18 |
torchvision
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# NO Gradio needed for this test
|
| 18 |
torchvision
|
| 19 |
+
|
| 20 |
+
gradio==3.50.2
|