Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,12 +11,9 @@ import spaces
|
|
| 11 |
|
| 12 |
@spaces.GPU
|
| 13 |
def init_model(model_id, is_pf=False):
|
| 14 |
-
if not is_pf
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
else:
|
| 18 |
-
path = hf_hub_download(repo_id="jameslahm/yoloe", filename=f"{model_id}-seg-pf.pt")
|
| 19 |
-
model = YOLOE(path)
|
| 20 |
model.eval()
|
| 21 |
model.to("cuda")
|
| 22 |
return model
|
|
@@ -72,13 +69,13 @@ def app():
|
|
| 72 |
with gr.Tab("Visual") as visual_tab:
|
| 73 |
with gr.Row():
|
| 74 |
visual_prompt_type = gr.Dropdown(choices=["bboxes", "masks"], value="bboxes", label="Visual Type", interactive=True)
|
| 75 |
-
visual_usage_type = gr.Radio(choices=["Intra-Image", "
|
| 76 |
|
| 77 |
with gr.Tab("Prompt-Free") as prompt_free_tab:
|
| 78 |
gr.HTML(
|
| 79 |
"""
|
| 80 |
<p style='text-align: center'>
|
| 81 |
-
Prompt-Free Mode is On
|
| 82 |
</p>
|
| 83 |
""", show_label=False)
|
| 84 |
|
|
@@ -123,11 +120,10 @@ def app():
|
|
| 123 |
return gr.update(value="Text"), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 124 |
|
| 125 |
def update_visual_image_visiblity(visual_prompt_type, visual_usage_type):
|
| 126 |
-
use_target = gr.update(visible=True) if visual_usage_type == "Inter-Image" else gr.update(visible=False)
|
| 127 |
if visual_prompt_type == "bboxes":
|
| 128 |
-
return gr.update(value="Visual"), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),
|
| 129 |
elif visual_prompt_type == "masks":
|
| 130 |
-
return gr.update(value="Visual"), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True),
|
| 131 |
|
| 132 |
def update_pf_image_visibility():
|
| 133 |
return gr.update(value="Prompt-free"), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
@@ -159,10 +155,10 @@ def app():
|
|
| 159 |
|
| 160 |
def update_visual_usage_type(visual_usage_type):
|
| 161 |
if visual_usage_type == "Intra-Image":
|
| 162 |
-
return gr.update(visible=False
|
| 163 |
-
if visual_usage_type == "
|
| 164 |
-
return gr.update(visible=True
|
| 165 |
-
return gr.update(visible=False
|
| 166 |
|
| 167 |
visual_prompt_type.change(
|
| 168 |
fn=update_visual_prompt_type,
|
|
@@ -176,9 +172,10 @@ def app():
|
|
| 176 |
outputs=[target_image]
|
| 177 |
)
|
| 178 |
|
| 179 |
-
def run_inference(raw_image, box_image, mask_image, target_image, texts, model_id, image_size, conf_thresh, iou_thresh, prompt_type, visual_prompt_type):
|
| 180 |
# add text/built-in prompts
|
| 181 |
if prompt_type == "Text" or prompt_type == "Prompt-free":
|
|
|
|
| 182 |
image = raw_image
|
| 183 |
if prompt_type == "Prompt-free":
|
| 184 |
with open('tools/ram_tag_list.txt', 'r') as f:
|
|
@@ -190,9 +187,14 @@ def app():
|
|
| 190 |
}
|
| 191 |
# add visual prompt
|
| 192 |
elif prompt_type == "Visual":
|
|
|
|
|
|
|
| 193 |
if visual_prompt_type == "bboxes":
|
| 194 |
image, points = box_image["image"], box_image["points"]
|
| 195 |
points = np.array(points)
|
|
|
|
|
|
|
|
|
|
| 196 |
prompts = {
|
| 197 |
"bboxes": np.array([p[[0, 1, 3, 4]] for p in points if p[2] == 2]),
|
| 198 |
}
|
|
@@ -202,6 +204,9 @@ def app():
|
|
| 202 |
masks = np.array(masks.convert("L"))
|
| 203 |
masks = binary_fill_holes(masks).astype(np.uint8)
|
| 204 |
masks[masks > 0] = 1
|
|
|
|
|
|
|
|
|
|
| 205 |
prompts = {
|
| 206 |
"masks": masks[None]
|
| 207 |
}
|
|
@@ -209,10 +214,116 @@ def app():
|
|
| 209 |
|
| 210 |
yoloe_infer.click(
|
| 211 |
fn=run_inference,
|
| 212 |
-
inputs=[raw_image, box_image, mask_image, target_image, texts, model_id, image_size, conf_thresh, iou_thresh, prompt_type, visual_prompt_type],
|
| 213 |
outputs=[output_image],
|
| 214 |
)
|
| 215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
gradio_app = gr.Blocks()
|
| 218 |
with gradio_app:
|
|
@@ -241,7 +352,7 @@ with gradio_app:
|
|
| 241 |
)
|
| 242 |
gr.Markdown(
|
| 243 |
"""
|
| 244 |
-
Drawing **multiple** boxes or handcrafted shapes as visual prompt in an image is also supported.
|
| 245 |
"""
|
| 246 |
)
|
| 247 |
with gr.Row():
|
|
@@ -249,4 +360,4 @@ with gradio_app:
|
|
| 249 |
app()
|
| 250 |
|
| 251 |
if __name__ == '__main__':
|
| 252 |
-
gradio_app.launch(allowed_paths=["figures"])
|
|
|
|
| 11 |
|
| 12 |
@spaces.GPU
|
| 13 |
def init_model(model_id, is_pf=False):
|
| 14 |
+
filename = f"{model_id}-seg.pt" if not is_pf else f"{model_id}-seg-pf.pt"
|
| 15 |
+
path = hf_hub_download(repo_id="jameslahm/yoloe", filename=filename)
|
| 16 |
+
model = YOLOE(path)
|
|
|
|
|
|
|
|
|
|
| 17 |
model.eval()
|
| 18 |
model.to("cuda")
|
| 19 |
return model
|
|
|
|
| 69 |
with gr.Tab("Visual") as visual_tab:
|
| 70 |
with gr.Row():
|
| 71 |
visual_prompt_type = gr.Dropdown(choices=["bboxes", "masks"], value="bboxes", label="Visual Type", interactive=True)
|
| 72 |
+
visual_usage_type = gr.Radio(choices=["Intra-Image", "Cross-Image"], value="Intra-Image", label="Intra/Cross Image", interactive=True)
|
| 73 |
|
| 74 |
with gr.Tab("Prompt-Free") as prompt_free_tab:
|
| 75 |
gr.HTML(
|
| 76 |
"""
|
| 77 |
<p style='text-align: center'>
|
| 78 |
+
<b>Prompt-Free Mode is On</b>
|
| 79 |
</p>
|
| 80 |
""", show_label=False)
|
| 81 |
|
|
|
|
| 120 |
return gr.update(value="Text"), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 121 |
|
| 122 |
def update_visual_image_visiblity(visual_prompt_type, visual_usage_type):
|
|
|
|
| 123 |
if visual_prompt_type == "bboxes":
|
| 124 |
+
return gr.update(value="Visual"), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=(visual_usage_type == "Cross-Image"))
|
| 125 |
elif visual_prompt_type == "masks":
|
| 126 |
+
return gr.update(value="Visual"), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=(visual_usage_type == "Cross-Image"))
|
| 127 |
|
| 128 |
def update_pf_image_visibility():
|
| 129 |
return gr.update(value="Prompt-free"), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
|
| 155 |
|
| 156 |
def update_visual_usage_type(visual_usage_type):
|
| 157 |
if visual_usage_type == "Intra-Image":
|
| 158 |
+
return gr.update(visible=False)
|
| 159 |
+
if visual_usage_type == "Cross-Image":
|
| 160 |
+
return gr.update(visible=True)
|
| 161 |
+
return gr.update(visible=False)
|
| 162 |
|
| 163 |
visual_prompt_type.change(
|
| 164 |
fn=update_visual_prompt_type,
|
|
|
|
| 172 |
outputs=[target_image]
|
| 173 |
)
|
| 174 |
|
| 175 |
+
def run_inference(raw_image, box_image, mask_image, target_image, texts, model_id, image_size, conf_thresh, iou_thresh, prompt_type, visual_prompt_type, visual_usage_type):
|
| 176 |
# add text/built-in prompts
|
| 177 |
if prompt_type == "Text" or prompt_type == "Prompt-free":
|
| 178 |
+
target_image = None
|
| 179 |
image = raw_image
|
| 180 |
if prompt_type == "Prompt-free":
|
| 181 |
with open('tools/ram_tag_list.txt', 'r') as f:
|
|
|
|
| 187 |
}
|
| 188 |
# add visual prompt
|
| 189 |
elif prompt_type == "Visual":
|
| 190 |
+
if visual_usage_type != "Cross-Image":
|
| 191 |
+
target_image = None
|
| 192 |
if visual_prompt_type == "bboxes":
|
| 193 |
image, points = box_image["image"], box_image["points"]
|
| 194 |
points = np.array(points)
|
| 195 |
+
if len(points) == 0:
|
| 196 |
+
gr.Warning("No boxes are provided. No image output.", visible=True)
|
| 197 |
+
return gr.update(value=None)
|
| 198 |
prompts = {
|
| 199 |
"bboxes": np.array([p[[0, 1, 3, 4]] for p in points if p[2] == 2]),
|
| 200 |
}
|
|
|
|
| 204 |
masks = np.array(masks.convert("L"))
|
| 205 |
masks = binary_fill_holes(masks).astype(np.uint8)
|
| 206 |
masks[masks > 0] = 1
|
| 207 |
+
if masks.sum() == 0:
|
| 208 |
+
gr.Warning("No masks are provided. No image output.", visible=True)
|
| 209 |
+
return gr.update(value=None)
|
| 210 |
prompts = {
|
| 211 |
"masks": masks[None]
|
| 212 |
}
|
|
|
|
| 214 |
|
| 215 |
yoloe_infer.click(
|
| 216 |
fn=run_inference,
|
| 217 |
+
inputs=[raw_image, box_image, mask_image, target_image, texts, model_id, image_size, conf_thresh, iou_thresh, prompt_type, visual_prompt_type, visual_usage_type],
|
| 218 |
outputs=[output_image],
|
| 219 |
)
|
| 220 |
|
| 221 |
+
###################### Examples ##########################
|
| 222 |
+
text_examples = gr.Examples(
|
| 223 |
+
examples=[[
|
| 224 |
+
"ultralytics/assets/bus.jpg",
|
| 225 |
+
"person,bus",
|
| 226 |
+
"yoloe-v8l",
|
| 227 |
+
640,
|
| 228 |
+
0.25,
|
| 229 |
+
0.7]],
|
| 230 |
+
inputs=[raw_image, texts, model_id, image_size, conf_thresh, iou_thresh],
|
| 231 |
+
visible=True, cache_examples=False, label="Text Prompt Examples")
|
| 232 |
+
|
| 233 |
+
box_examples = gr.Examples(
|
| 234 |
+
examples=[[
|
| 235 |
+
{"image": "ultralytics/assets/bus_box.jpg", "points": [[235, 408, 2, 342, 863, 3]]},
|
| 236 |
+
"ultralytics/assets/zidane.jpg",
|
| 237 |
+
"yoloe-v8l",
|
| 238 |
+
640,
|
| 239 |
+
0.2,
|
| 240 |
+
0.7,
|
| 241 |
+
]],
|
| 242 |
+
inputs=[box_image, target_image, model_id, image_size, conf_thresh, iou_thresh],
|
| 243 |
+
visible=False, cache_examples=False, label="Box Visual Prompt Examples")
|
| 244 |
+
|
| 245 |
+
mask_examples = gr.Examples(
|
| 246 |
+
examples=[[
|
| 247 |
+
{"background": "ultralytics/assets/bus.jpg", "layers": ["ultralytics/assets/bus_mask.png"], "composite": "ultralytics/assets/bus_composite.jpg"},
|
| 248 |
+
"ultralytics/assets/zidane.jpg",
|
| 249 |
+
"yoloe-v8l",
|
| 250 |
+
640,
|
| 251 |
+
0.15,
|
| 252 |
+
0.7,
|
| 253 |
+
]],
|
| 254 |
+
inputs=[mask_image, target_image, model_id, image_size, conf_thresh, iou_thresh],
|
| 255 |
+
visible=False, cache_examples=False, label="Mask Visual Prompt Examples")
|
| 256 |
+
|
| 257 |
+
pf_examples = gr.Examples(
|
| 258 |
+
examples=[[
|
| 259 |
+
"ultralytics/assets/bus.jpg",
|
| 260 |
+
"yoloe-v8l",
|
| 261 |
+
640,
|
| 262 |
+
0.25,
|
| 263 |
+
0.7,
|
| 264 |
+
]],
|
| 265 |
+
inputs=[raw_image, model_id, image_size, conf_thresh, iou_thresh],
|
| 266 |
+
visible=False, cache_examples=False, label="Prompt-free Examples")
|
| 267 |
+
|
| 268 |
+
# Components update
|
| 269 |
+
def load_box_example(visual_usage_type):
|
| 270 |
+
return (gr.update(visible=True, value={"image": "ultralytics/assets/bus_box.jpg", "points": [[235, 408, 2, 342, 863, 3]]}),
|
| 271 |
+
gr.update(visible=(visual_usage_type=="Cross-Image")))
|
| 272 |
+
|
| 273 |
+
def load_mask_example(visual_usage_type):
|
| 274 |
+
return gr.update(visible=True), gr.update(visible=(visual_usage_type=="Cross-Image"))
|
| 275 |
+
|
| 276 |
+
box_examples.load_input_event.then(
|
| 277 |
+
fn=load_box_example,
|
| 278 |
+
inputs=visual_usage_type,
|
| 279 |
+
outputs=[box_image, target_image]
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
mask_examples.load_input_event.then(
|
| 283 |
+
fn=load_mask_example,
|
| 284 |
+
inputs=visual_usage_type,
|
| 285 |
+
outputs=[mask_image, target_image]
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
# Examples update
|
| 289 |
+
def update_text_examples():
|
| 290 |
+
return gr.Dataset(visible=True), gr.Dataset(visible=False), gr.Dataset(visible=False), gr.Dataset(visible=False)
|
| 291 |
+
|
| 292 |
+
def update_pf_examples():
|
| 293 |
+
return gr.Dataset(visible=False), gr.Dataset(visible=False), gr.Dataset(visible=False), gr.Dataset(visible=True)
|
| 294 |
+
|
| 295 |
+
def update_visual_examples(visual_prompt_type):
|
| 296 |
+
if visual_prompt_type == "bboxes":
|
| 297 |
+
return gr.Dataset(visible=False), gr.Dataset(visible=True), gr.Dataset(visible=False), gr.Dataset(visible=False),
|
| 298 |
+
elif visual_prompt_type == "masks":
|
| 299 |
+
return gr.Dataset(visible=False), gr.Dataset(visible=False), gr.Dataset(visible=True), gr.Dataset(visible=False),
|
| 300 |
+
|
| 301 |
+
text_tab.select(
|
| 302 |
+
fn=update_text_examples,
|
| 303 |
+
inputs=None,
|
| 304 |
+
outputs=[text_examples.dataset, box_examples.dataset, mask_examples.dataset, pf_examples.dataset]
|
| 305 |
+
)
|
| 306 |
+
visual_tab.select(
|
| 307 |
+
fn=update_visual_examples,
|
| 308 |
+
inputs=[visual_prompt_type],
|
| 309 |
+
outputs=[text_examples.dataset, box_examples.dataset, mask_examples.dataset, pf_examples.dataset]
|
| 310 |
+
)
|
| 311 |
+
prompt_free_tab.select(
|
| 312 |
+
fn=update_pf_examples,
|
| 313 |
+
inputs=None,
|
| 314 |
+
outputs=[text_examples.dataset, box_examples.dataset, mask_examples.dataset, pf_examples.dataset]
|
| 315 |
+
)
|
| 316 |
+
visual_prompt_type.change(
|
| 317 |
+
fn=update_visual_examples,
|
| 318 |
+
inputs=[visual_prompt_type],
|
| 319 |
+
outputs=[text_examples.dataset, box_examples.dataset, mask_examples.dataset, pf_examples.dataset]
|
| 320 |
+
)
|
| 321 |
+
visual_usage_type.change(
|
| 322 |
+
fn=update_visual_examples,
|
| 323 |
+
inputs=[visual_prompt_type],
|
| 324 |
+
outputs=[text_examples.dataset, box_examples.dataset, mask_examples.dataset, pf_examples.dataset]
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
|
| 328 |
gradio_app = gr.Blocks()
|
| 329 |
with gradio_app:
|
|
|
|
| 352 |
)
|
| 353 |
gr.Markdown(
|
| 354 |
"""
|
| 355 |
+
Drawing **multiple** boxes or handcrafted shapes as visual prompt in an image is also supported, which leads to more accurate prompt.
|
| 356 |
"""
|
| 357 |
)
|
| 358 |
with gr.Row():
|
|
|
|
| 360 |
app()
|
| 361 |
|
| 362 |
if __name__ == '__main__':
|
| 363 |
+
gradio_app.launch(allowed_paths=["figures"])
|