Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import sys | |
| from pathlib import Path | |
| import numpy as np | |
| import pandas as pd | |
| import torch | |
| import torchvision.transforms as T | |
| from decord import VideoReader, cpu | |
| from PIL import Image | |
| from torchvision.transforms.functional import InterpolationMode | |
| from tqdm import tqdm | |
| from transformers import AutoTokenizer | |
| sys.path.insert(0, os.path.join(str(Path(__file__).resolve().parents[2]), "src/third_party/InternVL/internvl_chat")) | |
| from internvl.model.internvl_chat.modeling_internvl_chat import InternVLChatModel # type: ignore | |
| IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
| IMAGENET_STD = (0.229, 0.224, 0.225) | |
| def build_transform(input_size): | |
| MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
| transform = T.Compose( | |
| [ | |
| T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), | |
| T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(mean=MEAN, std=STD), | |
| ] | |
| ) | |
| return transform | |
| def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
| best_ratio_diff = float("inf") | |
| best_ratio = (1, 1) | |
| area = width * height | |
| for ratio in target_ratios: | |
| target_aspect_ratio = ratio[0] / ratio[1] | |
| ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
| if ratio_diff < best_ratio_diff: | |
| best_ratio_diff = ratio_diff | |
| best_ratio = ratio | |
| elif ratio_diff == best_ratio_diff: | |
| if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
| best_ratio = ratio | |
| return best_ratio | |
| def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
| orig_width, orig_height = image.size | |
| aspect_ratio = orig_width / orig_height | |
| # calculate the existing image aspect ratio | |
| target_ratios = set( | |
| (i, j) | |
| for n in range(min_num, max_num + 1) | |
| for i in range(1, n + 1) | |
| for j in range(1, n + 1) | |
| if i * j <= max_num and i * j >= min_num | |
| ) | |
| target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| # find the closest aspect ratio to the target | |
| target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
| # calculate the target width and height | |
| target_width = image_size * target_aspect_ratio[0] | |
| target_height = image_size * target_aspect_ratio[1] | |
| blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
| # resize the image | |
| resized_img = image.resize((target_width, target_height)) | |
| processed_images = [] | |
| for i in range(blocks): | |
| box = ( | |
| (i % (target_width // image_size)) * image_size, | |
| (i // (target_width // image_size)) * image_size, | |
| ((i % (target_width // image_size)) + 1) * image_size, | |
| ((i // (target_width // image_size)) + 1) * image_size, | |
| ) | |
| # split the image | |
| split_img = resized_img.crop(box) | |
| processed_images.append(split_img) | |
| assert len(processed_images) == blocks | |
| if use_thumbnail and len(processed_images) != 1: | |
| thumbnail_img = image.resize((image_size, image_size)) | |
| processed_images.append(thumbnail_img) | |
| return processed_images | |
| def load_image(image_file, input_size=448, max_num=12): | |
| image = Image.open(image_file).convert("RGB") | |
| transform = build_transform(input_size=input_size) | |
| images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
| pixel_values = [transform(image) for image in images] | |
| pixel_values = torch.stack(pixel_values) | |
| return pixel_values | |
| def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): | |
| if bound: | |
| start, end = bound[0], bound[1] | |
| else: | |
| start, end = -100000, 100000 | |
| start_idx = max(first_idx, round(start * fps)) | |
| end_idx = min(round(end * fps), max_frame) | |
| seg_size = float(end_idx - start_idx) / num_segments | |
| frame_indices = np.array( | |
| [int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)] | |
| ) | |
| return frame_indices | |
| def load_video( | |
| video_path, | |
| bound=None, | |
| input_size=448, | |
| max_num=1, | |
| num_segments=32, | |
| cache_dir=".cache/expcache", | |
| ): | |
| vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) | |
| max_frame = len(vr) - 1 | |
| fps = float(vr.get_avg_fps()) | |
| video_cache_dir = video_path.split("/")[-2] + "_" + os.path.basename(video_path).split(".")[0] | |
| video_cache_dir = os.path.join(cache_dir, video_cache_dir) | |
| cache_filename = os.path.join( | |
| video_cache_dir, | |
| f"_bound-{bound}_input_size-{input_size}_max_num-{max_num}_num_segments-{num_segments}.pt", | |
| ) | |
| if os.path.exists(cache_filename) and os.path.isfile(cache_filename): | |
| cache = torch.load(cache_filename, weights_only=True) | |
| pixel_values = cache["pixel_values"] | |
| num_patches_list = cache["num_patches_list"] | |
| else: | |
| pixel_values_list, num_patches_list = [], [] | |
| transform = build_transform(input_size=input_size) | |
| frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) | |
| frame_indices = np.append(0, frame_indices) # Add 0 at the beginning of the list | |
| frame_indices = np.append(frame_indices, max_frame) # Add max_frame at the end of the list | |
| os.makedirs(video_cache_dir, exist_ok=True) | |
| idx = 0 | |
| for frame_index in frame_indices: | |
| img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB") | |
| img.save(os.path.join(video_cache_dir, f"frame_{frame_index}_tile_{idx}.png")) | |
| img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
| pixel_values = [transform(tile) for tile in img] | |
| pixel_values = torch.stack(pixel_values) | |
| num_patches_list.append(pixel_values.shape[0]) | |
| pixel_values_list.append(pixel_values) | |
| idx += 1 | |
| pixel_values = torch.cat(pixel_values_list) | |
| os.makedirs(cache_dir, exist_ok=True) | |
| torch.save({"pixel_values": pixel_values, "num_patches_list": num_patches_list}, cache_filename) | |
| return pixel_values, num_patches_list | |
| def analyze_predictions(file_path): | |
| # Read the CSV file | |
| df = pd.read_csv(file_path) | |
| # Calculate overall accuracy | |
| total_samples = len(df) | |
| correct_predictions = df["is_correct"].value_counts().get(True, 0) | |
| overall_accuracy = correct_predictions / total_samples | |
| # Initialize metrics for each class | |
| classes = ["A", "B", "C"] | |
| class_metrics = {} | |
| for cls in classes: | |
| # Filter for samples where target is this class | |
| true_class = df[df["target"] == cls] | |
| # Filter for samples where prediction is this class | |
| # pred_class = df[df["predict"] == cls] | |
| # Calculate TP, FP, FN | |
| TP = len(df[(df["target"] == cls) & (df["predict"] == cls)]) | |
| FP = len(df[(df["target"] != cls) & (df["predict"] == cls)]) | |
| FN = len(df[(df["target"] == cls) & (df["predict"] != cls)]) | |
| # Calculate precision, recall, F1 | |
| precision = TP / (TP + FP) if (TP + FP) > 0 else 0 | |
| recall = TP / (TP + FN) if (TP + FN) > 0 else 0 | |
| f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 | |
| # Store metrics | |
| class_metrics[cls] = { | |
| "total_samples": len(true_class), | |
| "precision": precision, | |
| "recall": recall, | |
| "f1": f1, | |
| "true_positives": TP, | |
| "false_positives": FP, | |
| "false_negatives": FN, | |
| } | |
| print(f"Overall Accuracy: {overall_accuracy:.4f} ({correct_predictions}/{total_samples})") | |
| print() | |
| print("Indicators for each category:") | |
| for cls in classes: | |
| metrics = class_metrics[cls] | |
| print(f" Class {cls}:") | |
| print(f" Total Samples: {metrics['total_samples']}") | |
| print(f" Precision: {metrics['precision']:.4f}") | |
| print(f" Recall: {metrics['recall']:.4f}") | |
| print(f" F1 Score: {metrics['f1']:.4f}") | |
| print(f" True Positives: {metrics['true_positives']}") | |
| print(f" False Positives: {metrics['false_positives']}") | |
| print(f" False Negatives: {metrics['false_negatives']}") | |
| return overall_accuracy, class_metrics | |
| def s_thread(video_dir, model_path, device, chunk, idx, queue): | |
| model = InternVLChatModel.from_pretrained( | |
| model_path, | |
| torch_dtype=torch.bfloat16, | |
| low_cpu_mem_usage=True, | |
| use_flash_attn=True, | |
| ) | |
| model = model.eval().to(device) | |
| tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) | |
| generation_config = dict(max_new_tokens=1024, do_sample=False) | |
| res = [] | |
| for line in tqdm(chunk, position=idx, desc=f"Device {device}"): | |
| data = json.loads(line) | |
| video_path = os.path.join(video_dir, data["video"]) | |
| ques = data["conversations"][0]["value"] | |
| target_ans = data["conversations"][1]["value"].split("<CONCLUSION>")[1].split("</CONCLUSION>")[0].strip() | |
| pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1) | |
| pixel_values = pixel_values.to(torch.bfloat16).to(device) | |
| video_prefix = "".join([f"Frame{i + 1}: <image>\n" for i in range(len(num_patches_list))]) | |
| question = video_prefix + f"{ques}" | |
| response = model.chat( | |
| tokenizer, | |
| pixel_values, | |
| question, | |
| generation_config, | |
| num_patches_list=num_patches_list, | |
| history=None, | |
| return_history=False, | |
| ) | |
| try: | |
| ans = response.split("<CONCLUSION>")[1].split("</CONCLUSION>")[0].strip() | |
| except Exception as e: | |
| print(f"Error: {e}, response: {response}") | |
| ans = response.strip()[0] | |
| is_correct = False | |
| if ans == target_ans: | |
| is_correct = True | |
| res.append(f"{video_path},{is_correct},{target_ans},{ans}") | |
| queue.put(res) | |
| if __name__ == "__main__": | |
| import argparse | |
| import torch.multiprocessing as mp | |
| parser = argparse.ArgumentParser(description="eval script for mmlm") | |
| parser.add_argument("--model_path", type=str, help="Path to the model checkpoint.") | |
| parser.add_argument("--test_file", type=str, help="Path to the test file.") | |
| parser.add_argument("--video_dir", type=str, help="Path to the test video directory.") | |
| parser.add_argument("--gpuids", type=str, help="GPU ids to use.") | |
| # python eval.py --model_path /path/to/model --test_file /path/to/test_file --video_dir /path/to/video_dir --gpuids 0,1,2,3 | |
| args = parser.parse_args() | |
| model_path = args.model_path | |
| test_file = args.test_file | |
| video_dir = args.video_dir | |
| gpu_ids = args.gpuids.split(",") if args.gpuids else ["0"] | |
| cot_test = Path(test_file).read_text().splitlines() | |
| chunks = np.array_split(cot_test, len(gpu_ids)) | |
| mp.set_start_method("spawn", force=True) | |
| queue = mp.Queue() | |
| processes = [] | |
| for idx, chunk in enumerate(chunks): | |
| device = gpu_ids[idx % len(gpu_ids)] | |
| device = f"cuda:{device}" | |
| p = mp.Process(target=s_thread, args=(video_dir, model_path, device, chunk, idx, queue)) | |
| processes.append(p) | |
| p.start() | |
| for process in processes: | |
| process.join() | |
| result = [] | |
| for _ in range(len(chunks)): | |
| res = queue.get() | |
| result.extend(res) | |
| res_saved = f"{'__'.join(model_path.split('/'))}_res.csv" | |
| with open(res_saved, "w") as f: | |
| f.write("video_id,is_correct,target,predict\n") | |
| for res in result: | |
| f.write(f"{res}\n") | |
| accuracy, metrics = analyze_predictions(res_saved) | |
| print("All processes finished.\n\n") | |