Spaces:
Runtime error
Runtime error
Commit
·
18af252
1
Parent(s):
0e7e92c
update
Browse files- autoregressive/models/generate.py +7 -5
- language/t5.py +2 -2
- model.py +1 -1
autoregressive/models/generate.py
CHANGED
|
@@ -57,6 +57,7 @@ def top_k_top_p_filtering(
|
|
| 57 |
|
| 58 |
|
| 59 |
def sample(logits, temperature: float=1.0, top_k: int=2000, top_p: float=1.0, sample_logits=True):
|
|
|
|
| 60 |
logits = logits[:, -1, :] / max(temperature, 1e-5)
|
| 61 |
if top_k > 0 or top_p < 1.0:
|
| 62 |
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
|
@@ -137,15 +138,16 @@ def decode_n_tokens(
|
|
| 137 |
|
| 138 |
@torch.no_grad()
|
| 139 |
def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, condition=None, condition_null=None, condition_token_nums=0, **sampling_kwargs):
|
|
|
|
| 140 |
if condition is not None:
|
| 141 |
with torch.no_grad():
|
| 142 |
-
print(f'nan: {torch.any(torch.isnan(model.adapter.model.embeddings.patch_embeddings.projection.weight))}')
|
| 143 |
-
print(model.adapter.model.embeddings.patch_embeddings.projection.weight)
|
| 144 |
condition = model.adapter(condition)
|
| 145 |
-
print(condition)
|
| 146 |
-
condition = torch.ones_like(condition)
|
| 147 |
condition = model.adapter_mlp(condition)
|
| 148 |
-
|
| 149 |
if model.model_type == 'c2i':
|
| 150 |
if cfg_scale > 1.0:
|
| 151 |
cond_null = torch.ones_like(cond) * model.num_classes
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
def sample(logits, temperature: float=1.0, top_k: int=2000, top_p: float=1.0, sample_logits=True):
|
| 60 |
+
# print(logits, torch.any(torch.isnan(logits)))
|
| 61 |
logits = logits[:, -1, :] / max(temperature, 1e-5)
|
| 62 |
if top_k > 0 or top_p < 1.0:
|
| 63 |
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
|
|
|
| 138 |
|
| 139 |
@torch.no_grad()
|
| 140 |
def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, condition=None, condition_null=None, condition_token_nums=0, **sampling_kwargs):
|
| 141 |
+
print("cond", torch.any(torch.isnan(cond)))
|
| 142 |
if condition is not None:
|
| 143 |
with torch.no_grad():
|
| 144 |
+
# print(f'nan: {torch.any(torch.isnan(model.adapter.model.embeddings.patch_embeddings.projection.weight))}')
|
| 145 |
+
# print(model.adapter.model.embeddings.patch_embeddings.projection.weight)
|
| 146 |
condition = model.adapter(condition)
|
| 147 |
+
# print("before condition", condition)
|
| 148 |
+
# condition = torch.ones_like(condition)
|
| 149 |
condition = model.adapter_mlp(condition)
|
| 150 |
+
print("condition", torch.any(torch.isnan(condition)))
|
| 151 |
if model.model_type == 'c2i':
|
| 152 |
if cfg_scale > 1.0:
|
| 153 |
cond_null = torch.ones_like(cond) * model.num_classes
|
language/t5.py
CHANGED
|
@@ -18,7 +18,7 @@ class T5Embedder:
|
|
| 18 |
|
| 19 |
def __init__(self, device, dir_or_name='t5-v1_1-xxl', *, local_cache=False, cache_dir=None, hf_token=None, use_text_preprocessing=True,
|
| 20 |
t5_model_kwargs=None, torch_dtype=None, use_offload_folder=None, model_max_length=120):
|
| 21 |
-
self.device = torch.device('
|
| 22 |
self.torch_dtype = torch_dtype or torch.bfloat16
|
| 23 |
if t5_model_kwargs is None:
|
| 24 |
t5_model_kwargs = {'low_cpu_mem_usage': True, 'torch_dtype': self.torch_dtype}
|
|
@@ -53,7 +53,7 @@ class T5Embedder:
|
|
| 53 |
print(tokenizer_path)
|
| 54 |
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
| 55 |
self.model = T5EncoderModel.from_pretrained(path, **t5_model_kwargs).eval()
|
| 56 |
-
self.model.to('cuda')
|
| 57 |
self.model_max_length = model_max_length
|
| 58 |
|
| 59 |
def get_text_embeddings(self, texts):
|
|
|
|
| 18 |
|
| 19 |
def __init__(self, device, dir_or_name='t5-v1_1-xxl', *, local_cache=False, cache_dir=None, hf_token=None, use_text_preprocessing=True,
|
| 20 |
t5_model_kwargs=None, torch_dtype=None, use_offload_folder=None, model_max_length=120):
|
| 21 |
+
self.device = torch.device('cpu')
|
| 22 |
self.torch_dtype = torch_dtype or torch.bfloat16
|
| 23 |
if t5_model_kwargs is None:
|
| 24 |
t5_model_kwargs = {'low_cpu_mem_usage': True, 'torch_dtype': self.torch_dtype}
|
|
|
|
| 53 |
print(tokenizer_path)
|
| 54 |
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
| 55 |
self.model = T5EncoderModel.from_pretrained(path, **t5_model_kwargs).eval()
|
| 56 |
+
# self.model.to('cuda')
|
| 57 |
self.model_max_length = model_max_length
|
| 58 |
|
| 59 |
def get_text_embeddings(self, texts):
|
model.py
CHANGED
|
@@ -123,9 +123,9 @@ class Model:
|
|
| 123 |
image = resize_image_to_16_multiple(image, 'canny')
|
| 124 |
W, H = image.size
|
| 125 |
print(W, H)
|
| 126 |
-
print("before cuda", self.gpt_model_canny.adapter.model.embeddings.patch_embeddings.projection.weight)
|
| 127 |
self.t5_model.model.to('cuda')
|
| 128 |
self.gpt_model_canny.to('cuda')
|
|
|
|
| 129 |
|
| 130 |
condition_img = self.get_control_canny(np.array(image), low_threshold,
|
| 131 |
high_threshold)
|
|
|
|
| 123 |
image = resize_image_to_16_multiple(image, 'canny')
|
| 124 |
W, H = image.size
|
| 125 |
print(W, H)
|
|
|
|
| 126 |
self.t5_model.model.to('cuda')
|
| 127 |
self.gpt_model_canny.to('cuda')
|
| 128 |
+
print("after cuda", self.gpt_model_canny.adapter.model.embeddings.patch_embeddings.projection.weight)
|
| 129 |
|
| 130 |
condition_img = self.get_control_canny(np.array(image), low_threshold,
|
| 131 |
high_threshold)
|