Spaces:
Runtime error
Runtime error
wondervictor
commited on
Commit
·
1b32236
1
Parent(s):
fc47e93
add requirements
Browse files- condition/midas/midas/vit.py +116 -82
condition/midas/midas/vit.py
CHANGED
|
@@ -7,15 +7,17 @@ import torch.nn.functional as F
|
|
| 7 |
|
| 8 |
|
| 9 |
class Slice(nn.Module):
|
|
|
|
| 10 |
def __init__(self, start_index=1):
|
| 11 |
super(Slice, self).__init__()
|
| 12 |
self.start_index = start_index
|
| 13 |
|
| 14 |
def forward(self, x):
|
| 15 |
-
return x[:, self.start_index
|
| 16 |
|
| 17 |
|
| 18 |
class AddReadout(nn.Module):
|
|
|
|
| 19 |
def __init__(self, start_index=1):
|
| 20 |
super(AddReadout, self).__init__()
|
| 21 |
self.start_index = start_index
|
|
@@ -25,24 +27,27 @@ class AddReadout(nn.Module):
|
|
| 25 |
readout = (x[:, 0] + x[:, 1]) / 2
|
| 26 |
else:
|
| 27 |
readout = x[:, 0]
|
| 28 |
-
return x[:, self.start_index
|
| 29 |
|
| 30 |
|
| 31 |
class ProjectReadout(nn.Module):
|
|
|
|
| 32 |
def __init__(self, in_features, start_index=1):
|
| 33 |
super(ProjectReadout, self).__init__()
|
| 34 |
self.start_index = start_index
|
| 35 |
|
| 36 |
-
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features),
|
|
|
|
| 37 |
|
| 38 |
def forward(self, x):
|
| 39 |
-
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index
|
| 40 |
-
features = torch.cat((x[:, self.start_index
|
| 41 |
|
| 42 |
return self.project(features)
|
| 43 |
|
| 44 |
|
| 45 |
class Transpose(nn.Module):
|
|
|
|
| 46 |
def __init__(self, dim0, dim1):
|
| 47 |
super(Transpose, self).__init__()
|
| 48 |
self.dim0 = dim0
|
|
@@ -58,10 +63,14 @@ def forward_vit(pretrained, x):
|
|
| 58 |
|
| 59 |
glob = pretrained.model.forward_flex(x)
|
| 60 |
|
| 61 |
-
layer_1 = pretrained.activations["1"]
|
| 62 |
-
layer_2 = pretrained.activations["2"]
|
| 63 |
-
layer_3 = pretrained.activations["3"]
|
| 64 |
-
layer_4 = pretrained.activations["4"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
| 67 |
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
|
@@ -71,14 +80,11 @@ def forward_vit(pretrained, x):
|
|
| 71 |
unflatten = nn.Sequential(
|
| 72 |
nn.Unflatten(
|
| 73 |
2,
|
| 74 |
-
torch.Size(
|
| 75 |
-
[
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
),
|
| 80 |
-
)
|
| 81 |
-
)
|
| 82 |
|
| 83 |
if layer_1.ndim == 3:
|
| 84 |
layer_1 = unflatten(layer_1)
|
|
@@ -89,24 +95,31 @@ def forward_vit(pretrained, x):
|
|
| 89 |
if layer_4.ndim == 3:
|
| 90 |
layer_4 = unflatten(layer_4)
|
| 91 |
|
| 92 |
-
layer_1 = pretrained.act_postprocess1[3
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
return layer_1, layer_2, layer_3, layer_4
|
| 98 |
|
| 99 |
|
| 100 |
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
| 101 |
posemb_tok, posemb_grid = (
|
| 102 |
-
posemb[:, :
|
| 103 |
-
posemb[0, self.start_index
|
| 104 |
)
|
| 105 |
|
| 106 |
gs_old = int(math.sqrt(len(posemb_grid)))
|
| 107 |
|
| 108 |
-
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old,
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
| 110 |
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
| 111 |
|
| 112 |
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
|
@@ -117,29 +130,27 @@ def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
|
| 117 |
def forward_flex(self, x):
|
| 118 |
b, c, h, w = x.shape
|
| 119 |
|
| 120 |
-
pos_embed = self._resize_pos_embed(
|
| 121 |
-
|
| 122 |
-
)
|
| 123 |
|
| 124 |
B = x.shape[0]
|
| 125 |
|
| 126 |
if hasattr(self.patch_embed, "backbone"):
|
| 127 |
x = self.patch_embed.backbone(x)
|
| 128 |
if isinstance(x, (list, tuple)):
|
| 129 |
-
x = x[
|
|
|
|
| 130 |
|
| 131 |
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
| 132 |
|
| 133 |
if getattr(self, "dist_token", None) is not None:
|
| 134 |
cls_tokens = self.cls_token.expand(
|
| 135 |
-
B, -1, -1
|
| 136 |
-
) # stole cls_tokens impl from Phil Wang, thanks
|
| 137 |
dist_token = self.dist_token.expand(B, -1, -1)
|
| 138 |
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
| 139 |
else:
|
| 140 |
cls_tokens = self.cls_token.expand(
|
| 141 |
-
B, -1, -1
|
| 142 |
-
) # stole cls_tokens impl from Phil Wang, thanks
|
| 143 |
x = torch.cat((cls_tokens, x), dim=1)
|
| 144 |
|
| 145 |
x = x + pos_embed
|
|
@@ -157,11 +168,15 @@ activations = {}
|
|
| 157 |
|
| 158 |
|
| 159 |
def get_activation(name):
|
|
|
|
| 160 |
def hook(model, input, output):
|
| 161 |
activations[name] = output
|
| 162 |
|
| 163 |
return hook
|
| 164 |
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
| 167 |
if use_readout == "ignore":
|
|
@@ -191,15 +206,26 @@ def _make_vit_b16_backbone(
|
|
| 191 |
):
|
| 192 |
pretrained = nn.Module()
|
| 193 |
|
|
|
|
| 194 |
pretrained.model = model
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
# pretrained.
|
| 201 |
-
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
# 32, 48, 136, 384
|
| 205 |
pretrained.act_postprocess1 = nn.Sequential(
|
|
@@ -286,10 +312,10 @@ def _make_vit_b16_backbone(
|
|
| 286 |
|
| 287 |
# We inject this function into the VisionTransformer instances so that
|
| 288 |
# we can use it with interpolated position embeddings without modifying the library source.
|
| 289 |
-
pretrained.model.forward_flex = types.MethodType(forward_flex,
|
|
|
|
| 290 |
pretrained.model._resize_pos_embed = types.MethodType(
|
| 291 |
-
_resize_pos_embed, pretrained.model
|
| 292 |
-
)
|
| 293 |
|
| 294 |
return pretrained
|
| 295 |
|
|
@@ -311,24 +337,28 @@ def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
|
| 311 |
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
| 312 |
|
| 313 |
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 314 |
-
return _make_vit_b16_backbone(
|
| 315 |
-
|
| 316 |
-
|
|
|
|
| 317 |
|
| 318 |
|
| 319 |
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
| 320 |
-
model = timm.create_model("vit_deit_base_patch16_384",
|
|
|
|
| 321 |
|
| 322 |
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 323 |
-
return _make_vit_b16_backbone(
|
| 324 |
-
|
| 325 |
-
|
|
|
|
| 326 |
|
| 327 |
|
| 328 |
-
def _make_pretrained_deitb16_distil_384(pretrained,
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
|
|
|
| 332 |
|
| 333 |
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 334 |
return _make_vit_b16_backbone(
|
|
@@ -354,23 +384,26 @@ def _make_vit_b_rn50_backbone(
|
|
| 354 |
|
| 355 |
pretrained.model = model
|
| 356 |
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
|
| 368 |
-
|
| 369 |
-
|
|
|
|
|
|
|
| 370 |
|
| 371 |
-
|
| 372 |
|
| 373 |
-
readout_oper = get_readout_oper(vit_features, features, use_readout,
|
|
|
|
| 374 |
|
| 375 |
if use_vit_only == True:
|
| 376 |
pretrained.act_postprocess1 = nn.Sequential(
|
|
@@ -419,12 +452,12 @@ def _make_vit_b_rn50_backbone(
|
|
| 419 |
),
|
| 420 |
)
|
| 421 |
else:
|
| 422 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
| 426 |
-
|
| 427 |
-
|
| 428 |
|
| 429 |
pretrained.act_postprocess3 = nn.Sequential(
|
| 430 |
readout_oper[2],
|
|
@@ -464,20 +497,21 @@ def _make_vit_b_rn50_backbone(
|
|
| 464 |
|
| 465 |
# We inject this function into the VisionTransformer instances so that
|
| 466 |
# we can use it with interpolated position embeddings without modifying the library source.
|
| 467 |
-
pretrained.model.forward_flex = types.MethodType(forward_flex,
|
|
|
|
| 468 |
|
| 469 |
# We inject this function into the VisionTransformer instances so that
|
| 470 |
# we can use it with interpolated position embeddings without modifying the library source.
|
| 471 |
pretrained.model._resize_pos_embed = types.MethodType(
|
| 472 |
-
_resize_pos_embed, pretrained.model
|
| 473 |
-
)
|
| 474 |
|
| 475 |
return pretrained
|
| 476 |
|
| 477 |
|
| 478 |
-
def _make_pretrained_vitb_rn50_384(
|
| 479 |
-
|
| 480 |
-
|
|
|
|
| 481 |
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
| 482 |
|
| 483 |
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
|
@@ -488,4 +522,4 @@ def _make_pretrained_vitb_rn50_384(
|
|
| 488 |
hooks=hooks,
|
| 489 |
use_vit_only=use_vit_only,
|
| 490 |
use_readout=use_readout,
|
| 491 |
-
)
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
class Slice(nn.Module):
|
| 10 |
+
|
| 11 |
def __init__(self, start_index=1):
|
| 12 |
super(Slice, self).__init__()
|
| 13 |
self.start_index = start_index
|
| 14 |
|
| 15 |
def forward(self, x):
|
| 16 |
+
return x[:, self.start_index:]
|
| 17 |
|
| 18 |
|
| 19 |
class AddReadout(nn.Module):
|
| 20 |
+
|
| 21 |
def __init__(self, start_index=1):
|
| 22 |
super(AddReadout, self).__init__()
|
| 23 |
self.start_index = start_index
|
|
|
|
| 27 |
readout = (x[:, 0] + x[:, 1]) / 2
|
| 28 |
else:
|
| 29 |
readout = x[:, 0]
|
| 30 |
+
return x[:, self.start_index:] + readout.unsqueeze(1)
|
| 31 |
|
| 32 |
|
| 33 |
class ProjectReadout(nn.Module):
|
| 34 |
+
|
| 35 |
def __init__(self, in_features, start_index=1):
|
| 36 |
super(ProjectReadout, self).__init__()
|
| 37 |
self.start_index = start_index
|
| 38 |
|
| 39 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features),
|
| 40 |
+
nn.GELU())
|
| 41 |
|
| 42 |
def forward(self, x):
|
| 43 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index:])
|
| 44 |
+
features = torch.cat((x[:, self.start_index:], readout), -1)
|
| 45 |
|
| 46 |
return self.project(features)
|
| 47 |
|
| 48 |
|
| 49 |
class Transpose(nn.Module):
|
| 50 |
+
|
| 51 |
def __init__(self, dim0, dim1):
|
| 52 |
super(Transpose, self).__init__()
|
| 53 |
self.dim0 = dim0
|
|
|
|
| 63 |
|
| 64 |
glob = pretrained.model.forward_flex(x)
|
| 65 |
|
| 66 |
+
# layer_1 = pretrained.activations["1"]
|
| 67 |
+
# layer_2 = pretrained.activations["2"]
|
| 68 |
+
# layer_3 = pretrained.activations["3"]
|
| 69 |
+
# layer_4 = pretrained.activations["4"]
|
| 70 |
+
layer_1 = pretrained.activations[0]
|
| 71 |
+
layer_2 = pretrained.activations[1]
|
| 72 |
+
layer_3 = pretrained.activations[2]
|
| 73 |
+
layer_4 = pretrained.activations[3]
|
| 74 |
|
| 75 |
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
| 76 |
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
|
|
|
| 80 |
unflatten = nn.Sequential(
|
| 81 |
nn.Unflatten(
|
| 82 |
2,
|
| 83 |
+
torch.Size([
|
| 84 |
+
h // pretrained.model.patch_size[1],
|
| 85 |
+
w // pretrained.model.patch_size[0],
|
| 86 |
+
]),
|
| 87 |
+
))
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
if layer_1.ndim == 3:
|
| 90 |
layer_1 = unflatten(layer_1)
|
|
|
|
| 95 |
if layer_4.ndim == 3:
|
| 96 |
layer_4 = unflatten(layer_4)
|
| 97 |
|
| 98 |
+
layer_1 = pretrained.act_postprocess1[3:len(pretrained.act_postprocess1)](
|
| 99 |
+
layer_1)
|
| 100 |
+
layer_2 = pretrained.act_postprocess2[3:len(pretrained.act_postprocess2)](
|
| 101 |
+
layer_2)
|
| 102 |
+
layer_3 = pretrained.act_postprocess3[3:len(pretrained.act_postprocess3)](
|
| 103 |
+
layer_3)
|
| 104 |
+
layer_4 = pretrained.act_postprocess4[3:len(pretrained.act_postprocess4)](
|
| 105 |
+
layer_4)
|
| 106 |
|
| 107 |
return layer_1, layer_2, layer_3, layer_4
|
| 108 |
|
| 109 |
|
| 110 |
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
| 111 |
posemb_tok, posemb_grid = (
|
| 112 |
+
posemb[:, :self.start_index],
|
| 113 |
+
posemb[0, self.start_index:],
|
| 114 |
)
|
| 115 |
|
| 116 |
gs_old = int(math.sqrt(len(posemb_grid)))
|
| 117 |
|
| 118 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old,
|
| 119 |
+
-1).permute(0, 3, 1, 2)
|
| 120 |
+
posemb_grid = F.interpolate(posemb_grid,
|
| 121 |
+
size=(gs_h, gs_w),
|
| 122 |
+
mode="bilinear")
|
| 123 |
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
| 124 |
|
| 125 |
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
|
|
|
| 130 |
def forward_flex(self, x):
|
| 131 |
b, c, h, w = x.shape
|
| 132 |
|
| 133 |
+
pos_embed = self._resize_pos_embed(self.pos_embed, h // self.patch_size[1],
|
| 134 |
+
w // self.patch_size[0])
|
|
|
|
| 135 |
|
| 136 |
B = x.shape[0]
|
| 137 |
|
| 138 |
if hasattr(self.patch_embed, "backbone"):
|
| 139 |
x = self.patch_embed.backbone(x)
|
| 140 |
if isinstance(x, (list, tuple)):
|
| 141 |
+
x = x[
|
| 142 |
+
-1] # last feature if backbone outputs list/tuple of features
|
| 143 |
|
| 144 |
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
| 145 |
|
| 146 |
if getattr(self, "dist_token", None) is not None:
|
| 147 |
cls_tokens = self.cls_token.expand(
|
| 148 |
+
B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
|
|
|
| 149 |
dist_token = self.dist_token.expand(B, -1, -1)
|
| 150 |
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
| 151 |
else:
|
| 152 |
cls_tokens = self.cls_token.expand(
|
| 153 |
+
B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
|
|
|
| 154 |
x = torch.cat((cls_tokens, x), dim=1)
|
| 155 |
|
| 156 |
x = x + pos_embed
|
|
|
|
| 168 |
|
| 169 |
|
| 170 |
def get_activation(name):
|
| 171 |
+
|
| 172 |
def hook(model, input, output):
|
| 173 |
activations[name] = output
|
| 174 |
|
| 175 |
return hook
|
| 176 |
|
| 177 |
+
def hook_act(module, input, output):
|
| 178 |
+
activations.append(output)
|
| 179 |
+
|
| 180 |
|
| 181 |
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
| 182 |
if use_readout == "ignore":
|
|
|
|
| 206 |
):
|
| 207 |
pretrained = nn.Module()
|
| 208 |
|
| 209 |
+
activations = []
|
| 210 |
pretrained.model = model
|
| 211 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(hook_act)
|
| 212 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(hook_act)
|
| 213 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(hook_act)
|
| 214 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(hook_act)
|
| 215 |
+
|
| 216 |
+
# pretrained.model.blocks[hooks[0]].register_forward_hook(
|
| 217 |
+
# get_activation("1"))
|
| 218 |
+
# pretrained.model.blocks[hooks[1]].register_forward_hook(
|
| 219 |
+
# get_activation("2"))
|
| 220 |
+
# pretrained.model.blocks[hooks[2]].register_forward_hook(
|
| 221 |
+
# get_activation("3"))
|
| 222 |
+
# pretrained.model.blocks[hooks[3]].register_forward_hook(
|
| 223 |
+
# get_activation("4"))
|
| 224 |
+
|
| 225 |
+
pretrained.activations = activations
|
| 226 |
+
|
| 227 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout,
|
| 228 |
+
start_index)
|
| 229 |
|
| 230 |
# 32, 48, 136, 384
|
| 231 |
pretrained.act_postprocess1 = nn.Sequential(
|
|
|
|
| 312 |
|
| 313 |
# We inject this function into the VisionTransformer instances so that
|
| 314 |
# we can use it with interpolated position embeddings without modifying the library source.
|
| 315 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex,
|
| 316 |
+
pretrained.model)
|
| 317 |
pretrained.model._resize_pos_embed = types.MethodType(
|
| 318 |
+
_resize_pos_embed, pretrained.model)
|
|
|
|
| 319 |
|
| 320 |
return pretrained
|
| 321 |
|
|
|
|
| 337 |
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
| 338 |
|
| 339 |
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 340 |
+
return _make_vit_b16_backbone(model,
|
| 341 |
+
features=[96, 192, 384, 768],
|
| 342 |
+
hooks=hooks,
|
| 343 |
+
use_readout=use_readout)
|
| 344 |
|
| 345 |
|
| 346 |
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
| 347 |
+
model = timm.create_model("vit_deit_base_patch16_384",
|
| 348 |
+
pretrained=pretrained)
|
| 349 |
|
| 350 |
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 351 |
+
return _make_vit_b16_backbone(model,
|
| 352 |
+
features=[96, 192, 384, 768],
|
| 353 |
+
hooks=hooks,
|
| 354 |
+
use_readout=use_readout)
|
| 355 |
|
| 356 |
|
| 357 |
+
def _make_pretrained_deitb16_distil_384(pretrained,
|
| 358 |
+
use_readout="ignore",
|
| 359 |
+
hooks=None):
|
| 360 |
+
model = timm.create_model("vit_deit_base_distilled_patch16_384",
|
| 361 |
+
pretrained=pretrained)
|
| 362 |
|
| 363 |
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 364 |
return _make_vit_b16_backbone(
|
|
|
|
| 384 |
|
| 385 |
pretrained.model = model
|
| 386 |
|
| 387 |
+
if use_vit_only == True:
|
| 388 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(
|
| 389 |
+
get_activation("1"))
|
| 390 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(
|
| 391 |
+
get_activation("2"))
|
| 392 |
+
else:
|
| 393 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
| 394 |
+
get_activation("1"))
|
| 395 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
| 396 |
+
get_activation("2"))
|
| 397 |
|
| 398 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(
|
| 399 |
+
get_activation("3"))
|
| 400 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(
|
| 401 |
+
get_activation("4"))
|
| 402 |
|
| 403 |
+
pretrained.activations = activations
|
| 404 |
|
| 405 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout,
|
| 406 |
+
start_index)
|
| 407 |
|
| 408 |
if use_vit_only == True:
|
| 409 |
pretrained.act_postprocess1 = nn.Sequential(
|
|
|
|
| 452 |
),
|
| 453 |
)
|
| 454 |
else:
|
| 455 |
+
pretrained.act_postprocess1 = nn.Sequential(nn.Identity(),
|
| 456 |
+
nn.Identity(),
|
| 457 |
+
nn.Identity())
|
| 458 |
+
pretrained.act_postprocess2 = nn.Sequential(nn.Identity(),
|
| 459 |
+
nn.Identity(),
|
| 460 |
+
nn.Identity())
|
| 461 |
|
| 462 |
pretrained.act_postprocess3 = nn.Sequential(
|
| 463 |
readout_oper[2],
|
|
|
|
| 497 |
|
| 498 |
# We inject this function into the VisionTransformer instances so that
|
| 499 |
# we can use it with interpolated position embeddings without modifying the library source.
|
| 500 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex,
|
| 501 |
+
pretrained.model)
|
| 502 |
|
| 503 |
# We inject this function into the VisionTransformer instances so that
|
| 504 |
# we can use it with interpolated position embeddings without modifying the library source.
|
| 505 |
pretrained.model._resize_pos_embed = types.MethodType(
|
| 506 |
+
_resize_pos_embed, pretrained.model)
|
|
|
|
| 507 |
|
| 508 |
return pretrained
|
| 509 |
|
| 510 |
|
| 511 |
+
def _make_pretrained_vitb_rn50_384(pretrained,
|
| 512 |
+
use_readout="ignore",
|
| 513 |
+
hooks=None,
|
| 514 |
+
use_vit_only=False):
|
| 515 |
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
| 516 |
|
| 517 |
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
|
|
|
| 522 |
hooks=hooks,
|
| 523 |
use_vit_only=use_vit_only,
|
| 524 |
use_readout=use_readout,
|
| 525 |
+
)
|