Spaces:
Runtime error
Runtime error
Update model.py
Browse files
model.py
CHANGED
|
@@ -103,10 +103,7 @@ class Model:
|
|
| 103 |
control_strength: float,
|
| 104 |
preprocessor_name: str,
|
| 105 |
) -> list[PIL.Image.Image]:
|
| 106 |
-
|
| 107 |
-
self.load_gpt_weight('edge')
|
| 108 |
-
self.gpt_model.to('cuda').to(torch.bfloat16)
|
| 109 |
-
self.vq_model.to('cuda')
|
| 110 |
if isinstance(image, np.ndarray):
|
| 111 |
image = Image.fromarray(image)
|
| 112 |
origin_W, origin_H = image.size
|
|
@@ -125,9 +122,15 @@ class Model:
|
|
| 125 |
elif preprocessor_name == 'No preprocess':
|
| 126 |
condition_img = image
|
| 127 |
print('get edge')
|
|
|
|
|
|
|
| 128 |
condition_img = condition_img.resize((512,512))
|
| 129 |
W, H = condition_img.size
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(1,1,1,1)
|
| 132 |
condition_img = condition_img.to(self.device)
|
| 133 |
condition_img = 2*(condition_img/255 - 0.5)
|
|
@@ -198,10 +201,7 @@ class Model:
|
|
| 198 |
control_strength: float,
|
| 199 |
preprocessor_name: str
|
| 200 |
) -> list[PIL.Image.Image]:
|
| 201 |
-
|
| 202 |
-
self.load_gpt_weight('depth')
|
| 203 |
-
self.gpt_model.to('cuda').to(torch.bfloat16)
|
| 204 |
-
self.vq_model.to(self.device)
|
| 205 |
if isinstance(image, np.ndarray):
|
| 206 |
image = Image.fromarray(image)
|
| 207 |
origin_W, origin_H = image.size
|
|
@@ -216,9 +216,15 @@ class Model:
|
|
| 216 |
elif preprocessor_name == 'No preprocess':
|
| 217 |
condition_img = image
|
| 218 |
print('get depth')
|
|
|
|
|
|
|
| 219 |
condition_img = condition_img.resize((512,512))
|
| 220 |
W, H = condition_img.size
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(1,1,1,1)
|
| 223 |
condition_img = condition_img.to(self.device)
|
| 224 |
condition_img = 2*(condition_img/255 - 0.5)
|
|
|
|
| 103 |
control_strength: float,
|
| 104 |
preprocessor_name: str,
|
| 105 |
) -> list[PIL.Image.Image]:
|
| 106 |
+
|
|
|
|
|
|
|
|
|
|
| 107 |
if isinstance(image, np.ndarray):
|
| 108 |
image = Image.fromarray(image)
|
| 109 |
origin_W, origin_H = image.size
|
|
|
|
| 122 |
elif preprocessor_name == 'No preprocess':
|
| 123 |
condition_img = image
|
| 124 |
print('get edge')
|
| 125 |
+
del self.preprocessor.model
|
| 126 |
+
torch.cuda.empty_cache()
|
| 127 |
condition_img = condition_img.resize((512,512))
|
| 128 |
W, H = condition_img.size
|
| 129 |
|
| 130 |
+
self.t5_model.model.to('cuda').to(torch.bfloat16)
|
| 131 |
+
self.load_gpt_weight('edge')
|
| 132 |
+
self.gpt_model.to('cuda').to(torch.bfloat16)
|
| 133 |
+
self.vq_model.to('cuda')
|
| 134 |
condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(1,1,1,1)
|
| 135 |
condition_img = condition_img.to(self.device)
|
| 136 |
condition_img = 2*(condition_img/255 - 0.5)
|
|
|
|
| 201 |
control_strength: float,
|
| 202 |
preprocessor_name: str
|
| 203 |
) -> list[PIL.Image.Image]:
|
| 204 |
+
|
|
|
|
|
|
|
|
|
|
| 205 |
if isinstance(image, np.ndarray):
|
| 206 |
image = Image.fromarray(image)
|
| 207 |
origin_W, origin_H = image.size
|
|
|
|
| 216 |
elif preprocessor_name == 'No preprocess':
|
| 217 |
condition_img = image
|
| 218 |
print('get depth')
|
| 219 |
+
del self.preprocessor.model
|
| 220 |
+
torch.cuda.empty_cache()
|
| 221 |
condition_img = condition_img.resize((512,512))
|
| 222 |
W, H = condition_img.size
|
| 223 |
|
| 224 |
+
self.t5_model.model.to(self.device).to(torch.bfloat16)
|
| 225 |
+
self.load_gpt_weight('depth')
|
| 226 |
+
self.gpt_model.to('cuda').to(torch.bfloat16)
|
| 227 |
+
self.vq_model.to(self.device)
|
| 228 |
condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(1,1,1,1)
|
| 229 |
condition_img = condition_img.to(self.device)
|
| 230 |
condition_img = 2*(condition_img/255 - 0.5)
|