Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,47 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
-
import json
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
)
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def load_database():
|
| 12 |
-
try:
|
| 13 |
-
with open(DATABASE_PATH, "r") as file:
|
| 14 |
-
return json.load(file)
|
| 15 |
-
except FileNotFoundError:
|
| 16 |
-
return {}
|
| 17 |
-
|
| 18 |
-
def save_database(database):
|
| 19 |
-
with open(DATABASE_PATH, "w") as file:
|
| 20 |
-
json.dump(database, file)
|
| 21 |
-
|
| 22 |
-
def format_prompt(message, history):
|
| 23 |
-
prompt = "<s>"
|
| 24 |
-
for user_prompt, bot_response in history:
|
| 25 |
-
prompt += f"[INST] {user_prompt} [/INST]"
|
| 26 |
-
prompt += f" {bot_response}</s> "
|
| 27 |
-
prompt += f"[INST] {message} [/INST]"
|
| 28 |
-
return prompt
|
| 29 |
-
|
| 30 |
-
def generate(
|
| 31 |
-
prompt, history, temperature=0.9, max_new_tokens=4096, top_p=0.9, repetition_penalty=1.2,
|
| 32 |
-
):
|
| 33 |
-
database = load_database() # Load the database
|
| 34 |
-
temperature = float(temperature)
|
| 35 |
-
if temperature < 1e-2:
|
| 36 |
-
temperature = 1e-2
|
| 37 |
-
top_p = float(top_p)
|
| 38 |
-
|
| 39 |
-
formatted_prompt = format_prompt(prompt, history)
|
| 40 |
-
if formatted_prompt in database:
|
| 41 |
-
response = database[formatted_prompt]
|
| 42 |
-
else:
|
| 43 |
-
response = client.text_generation(formatted_prompt, details=True, return_full_text=False)
|
| 44 |
-
response_text = response.generated_text
|
| 45 |
-
database[formatted_prompt] = response_text
|
| 46 |
-
save_database(database) # Save the updated database
|
| 47 |
-
|
| 48 |
-
yield response_text
|
| 49 |
-
|
| 50 |
-
css = """
|
| 51 |
-
#mkd {
|
| 52 |
-
height: 500px;
|
| 53 |
-
overflow: auto;
|
| 54 |
-
border: 1px solid #ccc;
|
| 55 |
-
}
|
| 56 |
-
"""
|
| 57 |
-
|
| 58 |
-
with gr.Blocks(css=css) as demo:
|
| 59 |
-
gr.ChatInterface(
|
| 60 |
-
generate,
|
| 61 |
-
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."], ["Write a short story about Paris."]]
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
demo.launch(debug=True)
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
|
| 5 |
+
# Check if a GPU is available and use it, otherwise use CPU
|
| 6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 7 |
+
|
| 8 |
+
# Load the pre-trained model and tokenizer from the saved directory
|
| 9 |
+
model_path = "blexus_pretrained_test"
|
| 10 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
|
| 11 |
+
model = GPT2LMHeadModel.from_pretrained(model_path).to(device)
|
| 12 |
+
|
| 13 |
+
# Set model to evaluation mode
|
| 14 |
+
model.eval()
|
| 15 |
+
|
| 16 |
+
# Function to generate text based on input prompt
|
| 17 |
+
def generate_text(prompt):
|
| 18 |
+
# Tokenize and encode the input prompt
|
| 19 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
| 20 |
+
|
| 21 |
+
# Generate continuation
|
| 22 |
+
with torch.no_grad():
|
| 23 |
+
generated_ids = model.generate(
|
| 24 |
+
input_ids,
|
| 25 |
+
max_length=50, # Maximum length of generated text
|
| 26 |
+
num_return_sequences=1, # Generate 1 sequence
|
| 27 |
+
pad_token_id=tokenizer.eos_token_id, # Use EOS token for padding
|
| 28 |
+
do_sample=True, # Enable sampling
|
| 29 |
+
top_k=50, # Top-k sampling
|
| 30 |
+
top_p=0.95 # Nucleus sampling
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Decode the generated text
|
| 34 |
+
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
| 35 |
+
return generated_text
|
| 36 |
+
|
| 37 |
+
# Create a Gradio interface
|
| 38 |
+
interface = gr.Interface(
|
| 39 |
+
fn=generate_text, # Function to call when interacting with the UI
|
| 40 |
+
inputs="text", # Input type: Single-line text
|
| 41 |
+
outputs="text", # Output type: Text (the generated output)
|
| 42 |
+
title="Quble Text Generation", # Title of the UI
|
| 43 |
+
description="Enter a prompt to generate text using Quble." # Simple description
|
| 44 |
)
|
| 45 |
|
| 46 |
+
# Launch the Gradio app
|
| 47 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|