Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Alibaba Cloud. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import subprocess | |
| subprocess.run( | |
| "pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True, | |
| ) | |
| import copy | |
| import re | |
| import os | |
| os.system('huggingface-cli login --token os.getenv("HF_TOKEN")') | |
| from argparse import ArgumentParser | |
| from threading import Thread | |
| import spaces | |
| import gradio as gr | |
| from qwen_vl_utils import process_vision_info | |
| from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, TextIteratorStreamer | |
| import torch | |
| DEFAULT_CKPT_PATH = 'Qwen/Qwen2-VL-7B-Instruct' | |
| def _get_args(): | |
| parser = ArgumentParser() | |
| parser.add_argument('-c', | |
| '--checkpoint-path', | |
| type=str, | |
| default=DEFAULT_CKPT_PATH, | |
| help='Checkpoint name or path, default to %(default)r') | |
| parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only') | |
| parser.add_argument('--share', | |
| action='store_true', | |
| default=False, | |
| help='Create a publicly shareable link for the interface.') | |
| parser.add_argument('--inbrowser', | |
| action='store_true', | |
| default=False, | |
| help='Automatically launch the interface in a new tab on the default browser.') | |
| parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.') | |
| parser.add_argument('--server-name', type=str, default='0.0.0.0', help='Demo server name.') | |
| args = parser.parse_args() | |
| return args | |
| def _load_model_processor(args): | |
| # if args.cpu_only: | |
| # device_map = 'cpu' | |
| # else: | |
| # device_map = 'auto' | |
| device_map = "cuda" if torch.cuda.is_available() else "cpu" | |
| # default: Load the model on the available device(s) | |
| # model = Qwen2VLForConditionalGeneration.from_pretrained(args.checkpoint_path, device_map=device_map) | |
| # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. | |
| model = Qwen2VLForConditionalGeneration.from_pretrained(args.checkpoint_path, | |
| torch_dtype='auto', | |
| attn_implementation='flash_attention_2', | |
| device_map=device_map) | |
| processor = AutoProcessor.from_pretrained(args.checkpoint_path) | |
| return model, processor | |
| def _parse_text(text): | |
| lines = text.split('\n') | |
| lines = [line for line in lines if line != ''] | |
| count = 0 | |
| for i, line in enumerate(lines): | |
| if '```' in line: | |
| count += 1 | |
| items = line.split('`') | |
| if count % 2 == 1: | |
| lines[i] = f'<pre><code class="language-{items[-1]}">' | |
| else: | |
| lines[i] = '<br></code></pre>' | |
| else: | |
| if i > 0: | |
| if count % 2 == 1: | |
| line = line.replace('`', r'\`') | |
| line = line.replace('<', '<') | |
| line = line.replace('>', '>') | |
| line = line.replace(' ', ' ') | |
| line = line.replace('*', '*') | |
| line = line.replace('_', '_') | |
| line = line.replace('-', '-') | |
| line = line.replace('.', '.') | |
| line = line.replace('!', '!') | |
| line = line.replace('(', '(') | |
| line = line.replace(')', ')') | |
| line = line.replace('$', '$') | |
| lines[i] = '<br>' + line | |
| text = ''.join(lines) | |
| return text | |
| def _remove_image_special(text): | |
| text = text.replace('<ref>', '').replace('</ref>', '') | |
| return re.sub(r'<box>.*?(</box>|$)', '', text) | |
| def is_video_file(filename): | |
| video_extensions = ['.mp4', '.avi', '.mkv', '.mov', '.wmv', '.flv', '.webm', '.mpeg'] | |
| return any(filename.lower().endswith(ext) for ext in video_extensions) | |
| def transform_messages(original_messages): | |
| transformed_messages = [] | |
| for message in original_messages: | |
| new_content = [] | |
| for item in message['content']: | |
| if 'image' in item: | |
| new_item = {'type': 'image', 'image': item['image']} | |
| elif 'text' in item: | |
| new_item = {'type': 'text', 'text': item['text']} | |
| elif 'video' in item: | |
| new_item = {'type': 'video', 'video': item['video']} | |
| else: | |
| continue | |
| new_content.append(new_item) | |
| new_message = {'role': message['role'], 'content': new_content} | |
| transformed_messages.append(new_message) | |
| return transformed_messages | |
| def _launch_demo(args, model, processor): | |
| def call_local_model(model, processor, messages): | |
| messages = transform_messages(messages) | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors='pt').to(model.device) | |
| print(inputs) | |
| tokenizer = processor.tokenizer | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| gen_kwargs = {'max_new_tokens': 512, 'streamer': streamer, **inputs} | |
| thread = Thread(target=model.generate, kwargs=gen_kwargs) | |
| thread.start() | |
| generated_text = '' | |
| for new_text in streamer: | |
| generated_text += new_text | |
| yield generated_text | |
| def create_predict_fn(): | |
| def predict(_chatbot, task_history): | |
| nonlocal model, processor | |
| chat_query = _chatbot[-1][0] | |
| query = task_history[-1][0] | |
| if len(chat_query) == 0: | |
| _chatbot.pop() | |
| task_history.pop() | |
| return _chatbot | |
| print('User: ' + _parse_text(query)) | |
| history_cp = copy.deepcopy(task_history) | |
| full_response = '' | |
| messages = [] | |
| content = [] | |
| for q, a in history_cp: | |
| if isinstance(q, (tuple, list)): | |
| if is_video_file(q[0]): | |
| content.append({'video': f'file://{q[0]}'}) | |
| else: | |
| content.append({'image': f'file://{q[0]}'}) | |
| else: | |
| content.append({'text': q}) | |
| messages.append({'role': 'user', 'content': content}) | |
| messages.append({'role': 'assistant', 'content': [{'text': a}]}) | |
| content = [] | |
| messages.pop() | |
| for response in call_local_model(model, processor, messages): | |
| _chatbot[-1] = (_parse_text(chat_query), _remove_image_special(_parse_text(response))) | |
| yield _chatbot | |
| full_response = _parse_text(response) | |
| task_history[-1] = (query, full_response) | |
| print('Qwen-VL-Chat: ' + _parse_text(full_response)) | |
| yield _chatbot | |
| return predict | |
| def create_regenerate_fn(): | |
| def regenerate(_chatbot, task_history): | |
| nonlocal model, processor | |
| if not task_history: | |
| return _chatbot | |
| item = task_history[-1] | |
| if item[1] is None: | |
| return _chatbot | |
| task_history[-1] = (item[0], None) | |
| chatbot_item = _chatbot.pop(-1) | |
| if chatbot_item[0] is None: | |
| _chatbot[-1] = (_chatbot[-1][0], None) | |
| else: | |
| _chatbot.append((chatbot_item[0], None)) | |
| _chatbot_gen = predict(_chatbot, task_history) | |
| for _chatbot in _chatbot_gen: | |
| yield _chatbot | |
| return regenerate | |
| predict = create_predict_fn() | |
| regenerate = create_regenerate_fn() | |
| def add_text(history, task_history, text): | |
| task_text = text | |
| history = history if history is not None else [] | |
| task_history = task_history if task_history is not None else [] | |
| history = history + [(_parse_text(text), None)] | |
| task_history = task_history + [(task_text, None)] | |
| return history, task_history, '' | |
| def add_file(history, task_history, file): | |
| history = history if history is not None else [] | |
| task_history = task_history if task_history is not None else [] | |
| history = history + [((file.name,), None)] | |
| task_history = task_history + [((file.name,), None)] | |
| return history, task_history | |
| def reset_user_input(): | |
| return gr.update(value='') | |
| def reset_state(task_history): | |
| task_history.clear() | |
| return [] | |
| with gr.Blocks() as demo: | |
| gr.Markdown("""\ | |
| <p align="center"><img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2-VL/qwen2VL_logo.png" style="height: 80px"/><p>""" | |
| ) | |
| gr.Markdown("""<center><font size=8>Qwen2-VL</center>""") | |
| gr.Markdown("""\ | |
| <center><font size=3>This WebUI is based on Qwen2-VL, developed by Alibaba Cloud.</center>""") | |
| gr.Markdown("""<center><font size=3>本WebUI基于Qwen2-VL。</center>""") | |
| chatbot = gr.Chatbot(label='Qwen2-VL', elem_classes='control-height', height=500) | |
| query = gr.Textbox(lines=2, label='Input') | |
| task_history = gr.State([]) | |
| with gr.Row(): | |
| addfile_btn = gr.UploadButton('📁 Upload (上传文件)', file_types=['image', 'video']) | |
| submit_btn = gr.Button('🚀 Submit (发送)') | |
| regen_btn = gr.Button('🤔️ Regenerate (重试)') | |
| empty_bin = gr.Button('🧹 Clear History (清除历史)') | |
| submit_btn.click(add_text, [chatbot, task_history, query], | |
| [chatbot, task_history]).then(predict, [chatbot, task_history], [chatbot], show_progress=True) | |
| submit_btn.click(reset_user_input, [], [query]) | |
| empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True) | |
| regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True) | |
| addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True) | |
| gr.Markdown("""\ | |
| <font size=2>Note: This demo is governed by the original license of Qwen2-VL. \ | |
| We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \ | |
| including hate speech, violence, pornography, deception, etc. \ | |
| (注:本演示受Qwen2-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\ | |
| 包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""") | |
| demo.queue().launch( | |
| share=args.share, | |
| inbrowser=args.inbrowser, | |
| server_port=args.server_port, | |
| server_name=args.server_name, | |
| ) | |
| def main(): | |
| args = _get_args() | |
| model, processor = _load_model_processor(args) | |
| _launch_demo(args, model, processor) | |
| if __name__ == '__main__': | |
| main() | |