| import os | |
| import time | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
| os.environ["TOKENIZERS_PARALLELISM"] = "0" | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
| def load_model_and_tokenizer(): | |
| model_name = "NousResearch/Hermes-2-Theta-Llama-3-8B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| special_tokens = {"pad_token": "<PAD>"} | |
| tokenizer.add_special_tokens(special_tokens) | |
| config = AutoConfig.from_pretrained(model_name) | |
| setattr( | |
| config, | |
| "quantizer_path", | |
| f"codebooks/Hermes-2-Theta-Llama-3-8B_1bit.xmad", | |
| ) | |
| setattr(config, "window_length", 32) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, config=config, torch_dtype=torch.float16, device_map="cuda:2" | |
| ) | |
| if len(tokenizer) > model.get_input_embeddings().weight.shape[0]: | |
| print( | |
| "WARNING: Resizing the embedding matrix to match the tokenizer vocab size." | |
| ) | |
| model.resize_token_embeddings(len(tokenizer)) | |
| model.config.pad_token_id = tokenizer.pad_token_id | |
| return model, tokenizer | |
| model, tokenizer = load_model_and_tokenizer() | |
| def process_dialog(message, history): | |
| dialog = [{"role": "user", "content": message}] | |
| prompt = tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True) | |
| tokenized_input_prompt_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) | |
| with torch.no_grad(): | |
| token_ids_for_each_answer = model.generate( | |
| tokenized_input_prompt_ids, | |
| max_new_tokens=512, | |
| temperature=0.7, | |
| do_sample=True, | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.pad_token_id, | |
| ) | |
| response = token_ids_for_each_answer[0][tokenized_input_prompt_ids.shape[-1]:] | |
| cleaned_response = tokenizer.decode( | |
| response, | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=True, | |
| ) | |
| return cleaned_response | |
| def chatbot_response(message, history): | |
| response = process_dialog(message, history) | |
| return response | |
| demo = gr.ChatInterface( | |
| fn=chatbot_response, | |
| examples=["Hello", "How are you?", "Tell me a joke"], | |
| title="LLM Chatbot", | |
| description="A demo chatbot using a quantized LLaMA model.", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |