Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import requests | |
| import inspect | |
| import pandas as pd | |
| from smolagents import DuckDuckGoSearchTool,GoogleSearchTool, HfApiModel, PythonInterpreterTool, VisitWebpageTool, CodeAgent,Tool, LiteLLMModel | |
| import hashlib | |
| import json | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, TransformersEngine | |
| import wikipedia | |
| from tooling import WikipediaPageFetcher,MathModelQuerer, YoutubeTranscriptFetcher, CodeModelQuerer | |
| from langchain_community.agent_toolkits.load_tools import load_tools | |
| import time | |
| import torch | |
| # (Keep Constants as is) | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Basic Agent Definition --- | |
| # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
| cache = {} | |
| class WebSearchTool(DuckDuckGoSearchTool): | |
| name = "web_search_ddg" | |
| description = "Search the web using DuckDuckGo" | |
| web_search_ddf = WebSearchTool() | |
| google_search = GoogleSearchTool(provider="serper") | |
| python_interpreter = PythonInterpreterTool(authorized_imports = [ | |
| # standard library | |
| 'os', # For file path manipulation, checking existence, deletion | |
| 'glob', # Find files matching specific patterns | |
| 'pathlib', # Alternative for path manipulation | |
| 'sys', | |
| 'math', | |
| 'random', | |
| 'datetime', | |
| 'time', | |
| 'json', | |
| 'csv', | |
| 're', | |
| 'collections', | |
| 'itertools', | |
| 'functools', | |
| 'io', | |
| 'base64', | |
| 'hashlib', | |
| 'pathlib', | |
| 'glob', | |
| # Third-Party Libraries (ensure they are installed in the execution env) | |
| 'pandas', # Data manipulation and analysis | |
| 'numpy', # Numerical operations | |
| 'scipy', # Scientific and technical computing (stats, optimize, etc.) | |
| 'sklearn', # Machine learning | |
| ]) | |
| visit_webpage_tool = VisitWebpageTool() | |
| wiki_tool = WikipediaPageFetcher() | |
| yt_transcript_fetcher = YoutubeTranscriptFetcher() | |
| # math_model_querer = MathModelQuerer() | |
| # code_model_querer = CodeModelQuerer() | |
| # batch of tools fromm Langchain. Credits DataDiva88 | |
| lc_ddg_search = Tool.from_langchain(load_tools(["ddg-search"])[0]) | |
| lc_wikipedia = Tool.from_langchain(load_tools(["wikipedia"])[0]) | |
| lc_arxiv = Tool.from_langchain(load_tools(["arxiv"])[0]) | |
| lc_pubmed = Tool.from_langchain(load_tools(["pubmed"])[0]) | |
| lc_stackechange = Tool.from_langchain(load_tools(["stackexchange"])[0]) | |
| def load_cached_answer(question_id: str) -> str: | |
| if question_id in cache.keys(): | |
| return cache[question_id] | |
| else: | |
| return None | |
| def cache_answer(question_id: str, answer: str): | |
| cache[question_id] = answer | |
| # --- Model Setup --- | |
| #MODEL_NAME = 'Qwen/Qwen2.5-3B-Instruct' # 'meta-llama/Llama-3.2-3B-Instruct' | |
| # "Qwen/Qwen2.5-VL-3B-Instruct"#'meta-llama/Llama-2-7b-hf'#'meta-llama/Llama-3.1-8B-Instruct'#'TinyLlama/TinyLlama-1.1B-Chat-v1.0'#'mistralai/Mistral-7B-Instruct-v0.2'#'microsoft/DialoGPT-small'# 'EleutherAI/gpt-neo-2.7B'#'distilbert/distilgpt2'#'deepseek-ai/DeepSeek-R1-Distill-Qwen-7B'#'mistralai/Mistral-7B-Instruct-v0.2' | |
| def load_model(model_name): | |
| """Download and load the model and tokenizer.""" | |
| try: | |
| print(f"Loading model {MODEL_NAME}...") | |
| model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| print(f"Model {MODEL_NAME} loaded successfully.") | |
| transformers_engine = TransformersEngine(pipeline("text-generation", model=model, tokenizer=tokenizer)) | |
| return transformers_engine, model | |
| except Exception as e: | |
| print(f"Error loading model: {e}") | |
| raise | |
| # Load the model and tokenizer locally | |
| # model, tokenizer = load_model() | |
| #model_id = "meta-llama/Llama-3.1-8B-Instruct" # "microsoft/phi-2"# not working out of the box"google/gemma-2-2b-it" #toobig"Qwen/Qwen1.5-7B-Chat"#working but stupid: "meta-llama/Llama-3.2-3B-Instruct" | |
| model = LiteLLMModel(model_id="anthropic/claude-3-5-sonnet-latest", temperature=0.2, max_tokens=512) | |
| #from smolagents import TransformersModel | |
| # model = TransformersModel( | |
| # model_id=model_id, | |
| # max_new_tokens=256) | |
| # model = HfApiModel() | |
| lc_ddg_search = Tool.from_langchain(load_tools(["ddg-search"])[0]) | |
| lc_wikipedia = Tool.from_langchain(load_tools(["wikipedia"])[0]) | |
| lc_arxiv = Tool.from_langchain(load_tools(["arxiv"])[0]) | |
| lc_pubmed = Tool.from_langchain(load_tools(["pubmed"])[0]) | |
| class BasicAgent: | |
| def __init__(self): | |
| print("BasicAgent initialized.") | |
| self.agent = CodeAgent( | |
| model=model, | |
| tools=[google_search,web_search_ddf, python_interpreter, visit_webpage_tool, wiki_tool,lc_wikipedia,lc_arxiv,lc_pubmed,lc_stackechange], | |
| max_steps=10, | |
| verbosity_level=1, | |
| grammar=None, | |
| planning_interval=3, | |
| add_base_tools=True, | |
| additional_authorized_imports=['requests', 'wikipedia', 'pandas','datetime'] | |
| ) | |
| def __call__(self, question: str) -> str: | |
| print(f"Agent received question (first 50 chars): {question[:50]}...") | |
| answer = self.agent.run(question) | |
| return answer | |
| def run_and_submit_all(profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
| if profile: | |
| username = f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent ( modify this part to create your agent) | |
| try: | |
| agent = BasicAgent() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| time.sleep(60) | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| cached = load_cached_answer(task_id) | |
| if cached: | |
| submitted_answer = cached | |
| print(f"Loaded cached answer for task {task_id}") | |
| else: | |
| submitted_answer = agent(question_text) | |
| cache_answer(task_id, submitted_answer) | |
| print(f"Generated and cached answer for task {task_id}") | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| # Removed max_rows=10 from DataFrame constructor | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "-" * 30 + " App Starting " + "-" * 30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: # Print repo URLs if SPACE_ID is found | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
| else: | |
| print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
| print("-" * (60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) | |