Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import torch
|
| 3 |
import torchvision.transforms as T
|
| 4 |
-
from decord import VideoReader, cpu
|
| 5 |
from PIL import Image
|
| 6 |
from torchvision.transforms.functional import InterpolationMode
|
| 7 |
from transformers import AutoModel, AutoTokenizer
|
|
|
|
| 8 |
|
| 9 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 10 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 11 |
|
|
|
|
| 12 |
def build_transform(input_size):
|
| 13 |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
| 14 |
transform = T.Compose([
|
|
@@ -19,195 +20,73 @@ def build_transform(input_size):
|
|
| 19 |
])
|
| 20 |
return transform
|
| 21 |
|
| 22 |
-
|
| 23 |
-
best_ratio_diff = float('inf')
|
| 24 |
-
best_ratio = (1, 1)
|
| 25 |
-
area = width * height
|
| 26 |
-
for ratio in target_ratios:
|
| 27 |
-
target_aspect_ratio = ratio[0] / ratio[1]
|
| 28 |
-
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 29 |
-
if ratio_diff < best_ratio_diff:
|
| 30 |
-
best_ratio_diff = ratio_diff
|
| 31 |
-
best_ratio = ratio
|
| 32 |
-
elif ratio_diff == best_ratio_diff:
|
| 33 |
-
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 34 |
-
best_ratio = ratio
|
| 35 |
-
return best_ratio
|
| 36 |
-
|
| 37 |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
| 38 |
orig_width, orig_height = image.size
|
| 39 |
aspect_ratio = orig_width / orig_height
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 46 |
-
|
| 47 |
-
# find the closest aspect ratio to the target
|
| 48 |
-
target_aspect_ratio = find_closest_aspect_ratio(
|
| 49 |
-
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 50 |
-
|
| 51 |
-
# calculate the target width and height
|
| 52 |
target_width = image_size * target_aspect_ratio[0]
|
| 53 |
target_height = image_size * target_aspect_ratio[1]
|
| 54 |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 55 |
-
|
| 56 |
-
# resize the image
|
| 57 |
resized_img = image.resize((target_width, target_height))
|
| 58 |
-
processed_images = [
|
| 59 |
-
|
| 60 |
-
box = (
|
| 61 |
(i % (target_width // image_size)) * image_size,
|
| 62 |
(i // (target_width // image_size)) * image_size,
|
| 63 |
((i % (target_width // image_size)) + 1) * image_size,
|
| 64 |
((i // (target_width // image_size)) + 1) * image_size
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
processed_images.append(split_img)
|
| 69 |
-
assert len(processed_images) == blocks
|
| 70 |
if use_thumbnail and len(processed_images) != 1:
|
| 71 |
thumbnail_img = image.resize((image_size, image_size))
|
| 72 |
processed_images.append(thumbnail_img)
|
| 73 |
return processed_images
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
transform = build_transform(input_size=input_size)
|
| 78 |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 79 |
pixel_values = [transform(image) for image in images]
|
| 80 |
pixel_values = torch.stack(pixel_values)
|
| 81 |
return pixel_values
|
| 82 |
|
| 83 |
-
#
|
| 84 |
path = 'OpenGVLab/InternVL2_5-1B'
|
| 85 |
model = AutoModel.from_pretrained(
|
| 86 |
path,
|
| 87 |
torch_dtype=torch.bfloat16,
|
| 88 |
low_cpu_mem_usage=True,
|
| 89 |
use_flash_attn=True,
|
| 90 |
-
trust_remote_code=True
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
# set the max number of tiles in `max_num`
|
| 94 |
-
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 95 |
-
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
| 96 |
-
|
| 97 |
-
# pure-text conversation (纯文本对话)
|
| 98 |
-
question = 'Hello, who are you?'
|
| 99 |
-
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
| 100 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 101 |
-
|
| 102 |
-
question = 'Can you tell me a story?'
|
| 103 |
-
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
| 104 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 105 |
-
|
| 106 |
-
# single-image single-round conversation (单图单轮对话)
|
| 107 |
-
question = '<image>\nPlease describe the image shortly.'
|
| 108 |
-
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
| 109 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 110 |
-
|
| 111 |
-
# single-image multi-round conversation (单图多轮对话)
|
| 112 |
-
question = '<image>\nPlease describe the image in detail.'
|
| 113 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
| 114 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 115 |
-
|
| 116 |
-
question = 'Please write a poem according to the image.'
|
| 117 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
| 118 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 119 |
-
|
| 120 |
-
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
| 121 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 122 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 123 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 124 |
|
| 125 |
-
|
| 126 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 127 |
-
history=None, return_history=True)
|
| 128 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 129 |
-
|
| 130 |
-
question = 'What are the similarities and differences between these two images.'
|
| 131 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 132 |
-
history=history, return_history=True)
|
| 133 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 134 |
-
|
| 135 |
-
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
| 136 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 137 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 138 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 139 |
-
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 140 |
-
|
| 141 |
-
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
|
| 142 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 143 |
-
num_patches_list=num_patches_list,
|
| 144 |
-
history=None, return_history=True)
|
| 145 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 146 |
-
|
| 147 |
-
question = 'What are the similarities and differences between these two images.'
|
| 148 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 149 |
-
num_patches_list=num_patches_list,
|
| 150 |
-
history=history, return_history=True)
|
| 151 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 152 |
-
|
| 153 |
-
# batch inference, single image per sample (单图批处理)
|
| 154 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 155 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 156 |
-
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 157 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 158 |
-
|
| 159 |
-
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
|
| 160 |
-
responses = model.batch_chat(tokenizer, pixel_values,
|
| 161 |
-
num_patches_list=num_patches_list,
|
| 162 |
-
questions=questions,
|
| 163 |
-
generation_config=generation_config)
|
| 164 |
-
for question, response in zip(questions, responses):
|
| 165 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 166 |
-
|
| 167 |
-
# video multi-round conversation (视频多轮对话)
|
| 168 |
-
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
| 169 |
-
if bound:
|
| 170 |
-
start, end = bound[0], bound[1]
|
| 171 |
-
else:
|
| 172 |
-
start, end = -100000, 100000
|
| 173 |
-
start_idx = max(first_idx, round(start * fps))
|
| 174 |
-
end_idx = min(round(end * fps), max_frame)
|
| 175 |
-
seg_size = float(end_idx - start_idx) / num_segments
|
| 176 |
-
frame_indices = np.array([
|
| 177 |
-
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
| 178 |
-
for idx in range(num_segments)
|
| 179 |
-
])
|
| 180 |
-
return frame_indices
|
| 181 |
-
|
| 182 |
-
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
|
| 183 |
-
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
| 184 |
-
max_frame = len(vr) - 1
|
| 185 |
-
fps = float(vr.get_avg_fps())
|
| 186 |
-
|
| 187 |
-
pixel_values_list, num_patches_list = [], []
|
| 188 |
-
transform = build_transform(input_size=input_size)
|
| 189 |
-
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
|
| 190 |
-
for frame_index in frame_indices:
|
| 191 |
-
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
|
| 192 |
-
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 193 |
-
pixel_values = [transform(tile) for tile in img]
|
| 194 |
-
pixel_values = torch.stack(pixel_values)
|
| 195 |
-
num_patches_list.append(pixel_values.shape[0])
|
| 196 |
-
pixel_values_list.append(pixel_values)
|
| 197 |
-
pixel_values = torch.cat(pixel_values_list)
|
| 198 |
-
return pixel_values, num_patches_list
|
| 199 |
-
|
| 200 |
-
video_path = './examples/red-panda.mp4'
|
| 201 |
-
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
| 202 |
-
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
| 203 |
-
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
|
| 204 |
-
question = video_prefix + 'What is the red panda doing?'
|
| 205 |
-
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
|
| 206 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 207 |
-
num_patches_list=num_patches_list, history=None, return_history=True)
|
| 208 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import torch
|
| 3 |
import torchvision.transforms as T
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
from torchvision.transforms.functional import InterpolationMode
|
| 6 |
from transformers import AutoModel, AutoTokenizer
|
| 7 |
+
import gradio as gr
|
| 8 |
|
| 9 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 10 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 11 |
|
| 12 |
+
# Build the image transform
|
| 13 |
def build_transform(input_size):
|
| 14 |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
| 15 |
transform = T.Compose([
|
|
|
|
| 20 |
])
|
| 21 |
return transform
|
| 22 |
|
| 23 |
+
# Dynamic preprocessing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
| 25 |
orig_width, orig_height = image.size
|
| 26 |
aspect_ratio = orig_width / orig_height
|
| 27 |
+
target_ratios = sorted(
|
| 28 |
+
set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num),
|
| 29 |
+
key=lambda x: x[0] * x[1]
|
| 30 |
+
)
|
| 31 |
+
target_aspect_ratio = target_ratios[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
target_width = image_size * target_aspect_ratio[0]
|
| 33 |
target_height = image_size * target_aspect_ratio[1]
|
| 34 |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
|
|
|
|
|
|
| 35 |
resized_img = image.resize((target_width, target_height))
|
| 36 |
+
processed_images = [
|
| 37 |
+
resized_img.crop((
|
|
|
|
| 38 |
(i % (target_width // image_size)) * image_size,
|
| 39 |
(i // (target_width // image_size)) * image_size,
|
| 40 |
((i % (target_width // image_size)) + 1) * image_size,
|
| 41 |
((i // (target_width // image_size)) + 1) * image_size
|
| 42 |
+
))
|
| 43 |
+
for i in range(blocks)
|
| 44 |
+
]
|
|
|
|
|
|
|
| 45 |
if use_thumbnail and len(processed_images) != 1:
|
| 46 |
thumbnail_img = image.resize((image_size, image_size))
|
| 47 |
processed_images.append(thumbnail_img)
|
| 48 |
return processed_images
|
| 49 |
|
| 50 |
+
# Load image dynamically from user upload
|
| 51 |
+
def load_image(image, input_size=448, max_num=12):
|
| 52 |
transform = build_transform(input_size=input_size)
|
| 53 |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 54 |
pixel_values = [transform(image) for image in images]
|
| 55 |
pixel_values = torch.stack(pixel_values)
|
| 56 |
return pixel_values
|
| 57 |
|
| 58 |
+
# Load the model and tokenizer
|
| 59 |
path = 'OpenGVLab/InternVL2_5-1B'
|
| 60 |
model = AutoModel.from_pretrained(
|
| 61 |
path,
|
| 62 |
torch_dtype=torch.bfloat16,
|
| 63 |
low_cpu_mem_usage=True,
|
| 64 |
use_flash_attn=True,
|
| 65 |
+
trust_remote_code=True
|
| 66 |
+
).eval().cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
# Define the function for Gradio interface
|
| 71 |
+
def process_image(image):
|
| 72 |
+
try:
|
| 73 |
+
pixel_values = load_image(image, max_num=12).to(torch.bfloat16).cuda()
|
| 74 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
| 75 |
+
question = '<image>\nPlease describe the image in detail.'
|
| 76 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
| 77 |
+
return response
|
| 78 |
+
except Exception as e:
|
| 79 |
+
return f"Error: {str(e)}"
|
| 80 |
+
|
| 81 |
+
# Create Gradio Interface
|
| 82 |
+
demo = gr.Interface(
|
| 83 |
+
fn=process_image,
|
| 84 |
+
inputs=gr.Image(type="pil"),
|
| 85 |
+
outputs="text",
|
| 86 |
+
title="Dynamic Image Processing with InternVL",
|
| 87 |
+
description="Upload an image and get detailed responses using the InternVL model."
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Launch the Gradio app
|
| 91 |
+
if __name__ == "__main__":
|
| 92 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|