Spaces:
Runtime error
Runtime error
Commit
·
ba06738
1
Parent(s):
97c6f77
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio
|
| 3 |
+
from transformers import TextClassificationPipeline, DistilBertTokenizer, DistilBertForSequenceClassification
|
| 4 |
+
|
| 5 |
+
# model path in hugginface
|
| 6 |
+
model_path = "yabramuvdi/distilbert-wfh"
|
| 7 |
+
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
| 8 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_path)
|
| 9 |
+
|
| 10 |
+
# create a pipeline for predictions
|
| 11 |
+
classifier = TextClassificationPipeline(model=model,
|
| 12 |
+
tokenizer=tokenizer,
|
| 13 |
+
return_all_scores=True)
|
| 14 |
+
|
| 15 |
+
# basic elements of page
|
| 16 |
+
title = "Work From Home Predictor"
|
| 17 |
+
description = "Demo application that predicts the pressence of work from home in any given sequence of text."
|
| 18 |
+
article = "" # text at the end of the app
|
| 19 |
+
examples = [
|
| 20 |
+
["This is a work from home position", 0.998],
|
| 21 |
+
["This position does not allow working from home", 0.998],
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
#%%
|
| 25 |
+
|
| 26 |
+
def predict_wfh(input_text, input_slider):
|
| 27 |
+
|
| 28 |
+
# get scores from model
|
| 29 |
+
predictions = classifier(input_text)[0]
|
| 30 |
+
|
| 31 |
+
# use selected threshold to classify as WFH
|
| 32 |
+
prob_wfh = predictions[1]["score"]
|
| 33 |
+
if prob_wfh > input_slider:
|
| 34 |
+
wfh = 1
|
| 35 |
+
no_wfh = 0
|
| 36 |
+
else:
|
| 37 |
+
wfh = 0
|
| 38 |
+
no_wfh = 1
|
| 39 |
+
|
| 40 |
+
return({"Not work from home": no_wfh, "Work from home": wfh}, f"Probability of WFH: {np.round(prob_wfh, 3)}")
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
label = gr.outputs.Label(num_top_classes=1, type="confidences", label="Binary classification")
|
| 44 |
+
text_output = gr.outputs.Textbox(type="auto", label="Predicted probability")
|
| 45 |
+
|
| 46 |
+
app = gr.Interface(fn=[predict_wfh],
|
| 47 |
+
inputs=[gr.inputs.Textbox(lines=10, label="Input text"), gr.inputs.Slider(0, 1, 0.001, label="Classification threshold")],
|
| 48 |
+
outputs=[label, text_output],
|
| 49 |
+
theme="huggingface",
|
| 50 |
+
title=title,
|
| 51 |
+
description=description,
|
| 52 |
+
article=article,
|
| 53 |
+
examples=examples,
|
| 54 |
+
allow_flagging="manual",
|
| 55 |
+
flagging_options=["mistake", "borderline"]
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
app.launch()
|