Corex / vector_rag.py
yadavkapil23's picture
Corex Codes
b09d5e9
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Use the generic HuggingFaceEmbeddings for the smaller model
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFacePipeline
# Remove BitsAndBytesConfig import
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import os
from dotenv import load_dotenv
load_dotenv()
# Set cache directories with fallback for permission issues
os.environ.setdefault('HF_HOME', '/tmp/huggingface_cache')
os.environ.setdefault('TRANSFORMERS_CACHE', '/tmp/huggingface_cache/transformers')
os.environ.setdefault('HF_DATASETS_CACHE', '/tmp/huggingface_cache/datasets')
# --- MODEL INITIALIZATION (Minimal Footprint) ---
print("Loading Qwen2-0.5B-Instruct...")
model_name = "Qwen/Qwen2-0.5B-Instruct"
# Removed: quantization_config = BitsAndBytesConfig(load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Removed: quantization_config parameter from from_pretrained
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="cpu",
trust_remote_code=True
)
llm_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256,
do_sample=True,
temperature=0.5,
top_p=0.9,
)
llm = HuggingFacePipeline(pipeline=llm_pipeline)
# Use the lighter all-MiniLM-L6-v2 embeddings model
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# --- DOCUMENT LOADING & CHUNKING ---
loader = PyPDFLoader("data/sample.pdf") # Correct path for Docker: data/sample.pdf
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_documents(documents)
if not chunks:
raise ValueError("No document chunks found.")
# Initialize FAISS and retriever
vectorstore = FAISS.from_documents(chunks, embeddings)
retriever = vectorstore.as_retriever()
# Expose the necessary components for rag.py to import
def query_vector_store(query: str, conversation_history: list = None) -> str:
"""
Query the vector store with conversation context.
Args:
query: The user's current question
conversation_history: List of previous messages (optional)
Returns:
Answer string or None if no documents found
"""
if conversation_history is None:
conversation_history = []
docs = retriever.get_relevant_documents(query)
if docs:
context = "\n\n".join([doc.page_content for doc in docs])
# Build prompt with conversation context
prompt = "You are a helpful assistant engaged in a conversation.\n\n"
if conversation_history:
# Format conversation history
history_lines = []
for msg in conversation_history[-10:]: # Last 10 messages
role = "User" if msg["role"] == "user" else "Assistant"
history_lines.append(f"{role}: {msg['content']}")
history_text = '\n'.join(history_lines)
prompt += f"Previous conversation:\n{history_text}\n\n"
prompt += f"""Use the following context from documents to answer the current question:
{context}
Current question: {query}
Answer:"""
raw_output = llm.invoke(prompt)
answer = raw_output.replace(prompt, "").strip()
return answer
return None