Spaces:
Running
Running
Commit
·
8959aae
1
Parent(s):
70215f2
OCR implememntation
Browse files- ocr_service.py +277 -0
ocr_service.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
DeepSeek OCR Service Module
|
| 3 |
+
Handles OCR text extraction using DeepSeek-OCR model
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import torch
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 10 |
+
from typing import Optional, Dict, Any
|
| 11 |
+
import logging
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
|
| 15 |
+
# Load environment variables
|
| 16 |
+
load_dotenv()
|
| 17 |
+
|
| 18 |
+
# Configure logging
|
| 19 |
+
logging.basicConfig(level=logging.INFO)
|
| 20 |
+
logger = logging.getLogger(__name__)
|
| 21 |
+
|
| 22 |
+
class DeepSeekOCRService:
|
| 23 |
+
"""
|
| 24 |
+
Service class for DeepSeek OCR text extraction
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def __init__(self, model_name: str = None):
|
| 28 |
+
"""
|
| 29 |
+
Initialize the DeepSeek OCR service
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
model_name (str): Hugging Face model name for DeepSeek OCR
|
| 33 |
+
"""
|
| 34 |
+
self.model_name = model_name or os.getenv('DEEPSEEK_OCR_MODEL', 'deepseek-ai/DeepSeek-OCR')
|
| 35 |
+
self.model = None
|
| 36 |
+
self.tokenizer = None
|
| 37 |
+
|
| 38 |
+
# Device configuration - optimized for CPU
|
| 39 |
+
device_config = os.getenv('DEEPSEEK_OCR_DEVICE', 'cpu')
|
| 40 |
+
if device_config == 'auto':
|
| 41 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 42 |
+
else:
|
| 43 |
+
self.device = device_config
|
| 44 |
+
|
| 45 |
+
logger.info(f"Initializing DeepSeek OCR on device: {self.device}")
|
| 46 |
+
|
| 47 |
+
def load_model(self):
|
| 48 |
+
"""
|
| 49 |
+
Load the DeepSeek OCR model and tokenizer
|
| 50 |
+
"""
|
| 51 |
+
try:
|
| 52 |
+
logger.info(f"Loading DeepSeek OCR model: {self.model_name}")
|
| 53 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 54 |
+
self.model_name,
|
| 55 |
+
trust_remote_code=True
|
| 56 |
+
)
|
| 57 |
+
# CPU-optimized model loading
|
| 58 |
+
if self.device == "cpu":
|
| 59 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 60 |
+
self.model_name,
|
| 61 |
+
trust_remote_code=True,
|
| 62 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
| 63 |
+
low_cpu_mem_usage=True, # Reduce memory usage
|
| 64 |
+
device_map="cpu" # Force CPU usage
|
| 65 |
+
)
|
| 66 |
+
else:
|
| 67 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 68 |
+
self.model_name,
|
| 69 |
+
trust_remote_code=True,
|
| 70 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
| 71 |
+
)
|
| 72 |
+
self.model.to(self.device)
|
| 73 |
+
logger.info("DeepSeek OCR model loaded successfully")
|
| 74 |
+
except Exception as e:
|
| 75 |
+
logger.error(f"Failed to load DeepSeek OCR model: {str(e)}")
|
| 76 |
+
raise e
|
| 77 |
+
|
| 78 |
+
def extract_text_from_image(self, image_path: str, prompt: str = None) -> Dict[str, Any]:
|
| 79 |
+
"""
|
| 80 |
+
Extract text from an image using DeepSeek OCR
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
image_path (str): Path to the image file
|
| 84 |
+
prompt (str, optional): Custom prompt for OCR processing
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
Dict containing extracted text and metadata
|
| 88 |
+
"""
|
| 89 |
+
if self.model is None or self.tokenizer is None:
|
| 90 |
+
self.load_model()
|
| 91 |
+
|
| 92 |
+
try:
|
| 93 |
+
# Load and preprocess the image
|
| 94 |
+
image = Image.open(image_path)
|
| 95 |
+
if image.mode != 'RGB':
|
| 96 |
+
image = image.convert('RGB')
|
| 97 |
+
|
| 98 |
+
# Use default prompt if none provided
|
| 99 |
+
if prompt is None:
|
| 100 |
+
prompt = "<|grounding|>Extract all text from this image."
|
| 101 |
+
|
| 102 |
+
# Prepare inputs
|
| 103 |
+
inputs = self.tokenizer(
|
| 104 |
+
prompt,
|
| 105 |
+
image,
|
| 106 |
+
return_tensors="pt"
|
| 107 |
+
).to(self.device)
|
| 108 |
+
|
| 109 |
+
# Get configuration from environment - CPU optimized defaults
|
| 110 |
+
max_tokens = int(os.getenv('DEEPSEEK_OCR_MAX_TOKENS', '256')) # Reduced for CPU
|
| 111 |
+
temperature = float(os.getenv('DEEPSEEK_OCR_TEMPERATURE', '0.1'))
|
| 112 |
+
|
| 113 |
+
# Generate text extraction
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
outputs = self.model.generate(
|
| 116 |
+
**inputs,
|
| 117 |
+
max_new_tokens=max_tokens,
|
| 118 |
+
do_sample=False,
|
| 119 |
+
temperature=temperature,
|
| 120 |
+
pad_token_id=self.tokenizer.eos_token_id
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Decode the output
|
| 124 |
+
extracted_text = self.tokenizer.decode(
|
| 125 |
+
outputs[0],
|
| 126 |
+
skip_special_tokens=True
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
# Clean up the extracted text
|
| 130 |
+
extracted_text = extracted_text.replace(prompt, "").strip()
|
| 131 |
+
|
| 132 |
+
return {
|
| 133 |
+
"success": True,
|
| 134 |
+
"extracted_text": extracted_text,
|
| 135 |
+
"image_path": image_path,
|
| 136 |
+
"model_used": self.model_name,
|
| 137 |
+
"device": self.device
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
except Exception as e:
|
| 141 |
+
logger.error(f"Error extracting text from image {image_path}: {str(e)}")
|
| 142 |
+
return {
|
| 143 |
+
"success": False,
|
| 144 |
+
"error": str(e),
|
| 145 |
+
"image_path": image_path
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
def extract_text_with_grounding(self, image_path: str, target_text: str = None) -> Dict[str, Any]:
|
| 149 |
+
"""
|
| 150 |
+
Extract text with grounding capabilities (locate specific text)
|
| 151 |
+
|
| 152 |
+
Args:
|
| 153 |
+
image_path (str): Path to the image file
|
| 154 |
+
target_text (str, optional): Specific text to locate in the image
|
| 155 |
+
|
| 156 |
+
Returns:
|
| 157 |
+
Dict containing extracted text and location information
|
| 158 |
+
"""
|
| 159 |
+
if self.model is None or self.tokenizer is None:
|
| 160 |
+
self.load_model()
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
image = Image.open(image_path)
|
| 164 |
+
if image.mode != 'RGB':
|
| 165 |
+
image = image.convert('RGB')
|
| 166 |
+
|
| 167 |
+
if target_text:
|
| 168 |
+
prompt = f"<|grounding|>Locate <|ref|>{target_text}<|/ref|> in the image."
|
| 169 |
+
else:
|
| 170 |
+
prompt = "<|grounding|>Extract all text from this image with location information."
|
| 171 |
+
|
| 172 |
+
inputs = self.tokenizer(
|
| 173 |
+
prompt,
|
| 174 |
+
image,
|
| 175 |
+
return_tensors="pt"
|
| 176 |
+
).to(self.device)
|
| 177 |
+
|
| 178 |
+
with torch.no_grad():
|
| 179 |
+
outputs = self.model.generate(
|
| 180 |
+
**inputs,
|
| 181 |
+
max_new_tokens=512,
|
| 182 |
+
do_sample=False,
|
| 183 |
+
temperature=0.1,
|
| 184 |
+
pad_token_id=self.tokenizer.eos_token_id
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
extracted_text = self.tokenizer.decode(
|
| 188 |
+
outputs[0],
|
| 189 |
+
skip_special_tokens=True
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
extracted_text = extracted_text.replace(prompt, "").strip()
|
| 193 |
+
|
| 194 |
+
return {
|
| 195 |
+
"success": True,
|
| 196 |
+
"extracted_text": extracted_text,
|
| 197 |
+
"grounding_info": target_text if target_text else "all_text",
|
| 198 |
+
"image_path": image_path,
|
| 199 |
+
"model_used": self.model_name
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
except Exception as e:
|
| 203 |
+
logger.error(f"Error in grounding extraction from {image_path}: {str(e)}")
|
| 204 |
+
return {
|
| 205 |
+
"success": False,
|
| 206 |
+
"error": str(e),
|
| 207 |
+
"image_path": image_path
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
def convert_to_markdown(self, image_path: str) -> Dict[str, Any]:
|
| 211 |
+
"""
|
| 212 |
+
Convert document image to markdown format
|
| 213 |
+
|
| 214 |
+
Args:
|
| 215 |
+
image_path (str): Path to the image file
|
| 216 |
+
|
| 217 |
+
Returns:
|
| 218 |
+
Dict containing markdown formatted text
|
| 219 |
+
"""
|
| 220 |
+
if self.model is None or self.tokenizer is None:
|
| 221 |
+
self.load_model()
|
| 222 |
+
|
| 223 |
+
try:
|
| 224 |
+
image = Image.open(image_path)
|
| 225 |
+
if image.mode != 'RGB':
|
| 226 |
+
image = image.convert('RGB')
|
| 227 |
+
|
| 228 |
+
prompt = "<|grounding|>Convert the document to markdown format."
|
| 229 |
+
|
| 230 |
+
inputs = self.tokenizer(
|
| 231 |
+
prompt,
|
| 232 |
+
image,
|
| 233 |
+
return_tensors="pt"
|
| 234 |
+
).to(self.device)
|
| 235 |
+
|
| 236 |
+
with torch.no_grad():
|
| 237 |
+
outputs = self.model.generate(
|
| 238 |
+
**inputs,
|
| 239 |
+
max_new_tokens=1024,
|
| 240 |
+
do_sample=False,
|
| 241 |
+
temperature=0.1,
|
| 242 |
+
pad_token_id=self.tokenizer.eos_token_id
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
markdown_text = self.tokenizer.decode(
|
| 246 |
+
outputs[0],
|
| 247 |
+
skip_special_tokens=True
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
markdown_text = markdown_text.replace(prompt, "").strip()
|
| 251 |
+
|
| 252 |
+
return {
|
| 253 |
+
"success": True,
|
| 254 |
+
"markdown_text": markdown_text,
|
| 255 |
+
"image_path": image_path,
|
| 256 |
+
"model_used": self.model_name
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
except Exception as e:
|
| 260 |
+
logger.error(f"Error converting to markdown from {image_path}: {str(e)}")
|
| 261 |
+
return {
|
| 262 |
+
"success": False,
|
| 263 |
+
"error": str(e),
|
| 264 |
+
"image_path": image_path
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
# Global OCR service instance
|
| 268 |
+
ocr_service = DeepSeekOCRService()
|
| 269 |
+
|
| 270 |
+
def get_ocr_service() -> DeepSeekOCRService:
|
| 271 |
+
"""
|
| 272 |
+
Get the global OCR service instance
|
| 273 |
+
|
| 274 |
+
Returns:
|
| 275 |
+
DeepSeekOCRService: The OCR service instance
|
| 276 |
+
"""
|
| 277 |
+
return ocr_service
|