Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from datetime import datetime | |
| import pytz | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| get_INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| INTRODUCE_BENCHMARK | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| AutoEvalColumn, | |
| ModelType, | |
| fields, | |
| WeightType, | |
| Precision | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import add_new_open_model_eval | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| ### Space initialisation | |
| # load the evaluation requests and results locally | |
| try: | |
| print(EVAL_REQUESTS_PATH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| print(EVAL_RESULTS_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
| ( | |
| finished_eval_queue_df, | |
| running_eval_queue_df, | |
| pending_eval_queue_df, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| def init_leaderboard(dataframe): | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| dataframe.insert(0, '', range(1, len(dataframe) + 1)) | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=[int]+[c.type for c in fields(AutoEvalColumn)], | |
| search_columns=[AutoEvalColumn.model.name], | |
| hide_columns=["Available on the hub"], | |
| filter_columns=[ | |
| ColumnFilter( | |
| AutoEvalColumn.still_on_hub.name, type="boolean", label="π Show Open Models Only", default=False | |
| ), | |
| ], | |
| bool_checkboxgroup_label="Hide models", | |
| interactive=False | |
| ) | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.HTML(get_INTRODUCTION_TEXT(LEADERBOARD_DF.shape[0] , datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S"), paper_link= "https://arxiv.org/abs/2503.12329"), elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=1): | |
| gr.HTML(INTRODUCE_BENCHMARK) #TODO | |
| leaderboard = init_leaderboard(LEADERBOARD_DF) | |
| with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| # with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
| # with gr.Column(): | |
| # with gr.Row(): | |
| # gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| # # with gr.Column(): | |
| # # with gr.Accordion( | |
| # # f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
| # # open=False, | |
| # # ): | |
| # # with gr.Row(): | |
| # # finished_eval_table = gr.components.Dataframe( | |
| # # value=finished_eval_queue_df, | |
| # # headers=EVAL_COLS, | |
| # # datatype=EVAL_TYPES, | |
| # # row_count=5, | |
| # # ) | |
| # # with gr.Accordion( | |
| # # f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
| # # open=False, | |
| # # ): | |
| # # with gr.Row(): | |
| # # running_eval_table = gr.components.Dataframe( | |
| # # value=running_eval_queue_df, | |
| # # headers=EVAL_COLS, | |
| # # datatype=EVAL_TYPES, | |
| # # row_count=5, | |
| # # ) | |
| # # with gr.Accordion( | |
| # # f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
| # # open=False, | |
| # # ): | |
| # # with gr.Row(): | |
| # # pending_eval_table = gr.components.Dataframe( | |
| # # value=pending_eval_queue_df, | |
| # # headers=EVAL_COLS, | |
| # # datatype=EVAL_TYPES, | |
| # # row_count=5, | |
| # # ) | |
| # with gr.Row(): | |
| # gr.Markdown("# βοΈβ¨ Submit Open model here!", elem_classes="markdown-text") | |
| # with gr.Row(): | |
| # with gr.Column(): | |
| # model_name = gr.Textbox(label="Model name") | |
| # submit_button = gr.Button("Submit Eval") | |
| # submission_result = gr.Markdown() | |
| # submit_button.click( | |
| # add_new_open_model_eval, | |
| # [ | |
| # model_name | |
| # ], | |
| # submission_result, | |
| # ) | |
| with gr.Row(): | |
| with gr.Accordion("π Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() |