Spaces:
Running
Running
Create generate_audio.py
Browse files- generate_audio.py +133 -0
generate_audio.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# generate_audio.py
|
| 2 |
+
|
| 3 |
+
import pickle
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
from transformers import BarkModel, AutoProcessor, AutoTokenizer
|
| 8 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
| 9 |
+
from scipy.io import wavfile
|
| 10 |
+
from pydub import AudioSegment
|
| 11 |
+
import io
|
| 12 |
+
import ast
|
| 13 |
+
|
| 14 |
+
class TTSGenerator:
|
| 15 |
+
"""
|
| 16 |
+
A class to generate podcast-style audio from a transcript using ParlerTTS and Bark models.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, transcript_file_path):
|
| 20 |
+
"""
|
| 21 |
+
Initialize the TTS generator with the path to the rewritten transcript file.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
transcript_file_path (str): Path to the file containing the rewritten transcript.
|
| 25 |
+
"""
|
| 26 |
+
self.transcript_file_path = transcript_file_path
|
| 27 |
+
self.output_audio_path = './resources/_podcast.mp3'
|
| 28 |
+
|
| 29 |
+
# Set device
|
| 30 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
|
| 32 |
+
# Load Parler model and tokenizer for Speaker 1
|
| 33 |
+
self.parler_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(self.device)
|
| 34 |
+
self.parler_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
|
| 35 |
+
self.speaker1_description = """
|
| 36 |
+
Laura's voice is expressive and dramatic in delivery, speaking at a moderately fast pace with a very close recording that almost has no background noise.
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
# Load Bark model and processor for Speaker 2
|
| 40 |
+
self.bark_processor = AutoProcessor.from_pretrained("suno/bark")
|
| 41 |
+
self.bark_model = BarkModel.from_pretrained("suno/bark", torch_dtype=torch.float16).to(self.device)
|
| 42 |
+
self.bark_sampling_rate = 24000
|
| 43 |
+
self.voice_preset = "v2/en_speaker_6"
|
| 44 |
+
|
| 45 |
+
def load_transcript(self):
|
| 46 |
+
"""
|
| 47 |
+
Loads the rewritten transcript from the specified file.
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
list: The content of the transcript as a list of tuples (speaker, text).
|
| 51 |
+
"""
|
| 52 |
+
with open(self.transcript_file_path, 'rb') as f:
|
| 53 |
+
return ast.literal_eval(pickle.load(f))
|
| 54 |
+
|
| 55 |
+
def generate_speaker1_audio(self, text):
|
| 56 |
+
"""
|
| 57 |
+
Generate audio for Speaker 1 using ParlerTTS.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
text (str): Text to be synthesized for Speaker 1.
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
np.array: Audio array.
|
| 64 |
+
int: Sampling rate.
|
| 65 |
+
"""
|
| 66 |
+
input_ids = self.parler_tokenizer(self.speaker1_description, return_tensors="pt").input_ids.to(self.device)
|
| 67 |
+
prompt_input_ids = self.parler_tokenizer(text, return_tensors="pt").input_ids.to(self.device)
|
| 68 |
+
generation = self.parler_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
| 69 |
+
audio_arr = generation.cpu().numpy().squeeze()
|
| 70 |
+
return audio_arr, self.parler_model.config.sampling_rate
|
| 71 |
+
|
| 72 |
+
def generate_speaker2_audio(self, text):
|
| 73 |
+
"""
|
| 74 |
+
Generate audio for Speaker 2 using Bark.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
text (str): Text to be synthesized for Speaker 2.
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
np.array: Audio array.
|
| 81 |
+
int: Sampling rate.
|
| 82 |
+
"""
|
| 83 |
+
inputs = self.bark_processor(text, voice_preset=self.voice_preset).to(self.device)
|
| 84 |
+
speech_output = self.bark_model.generate(**inputs, temperature=0.9, semantic_temperature=0.8)
|
| 85 |
+
audio_arr = speech_output[0].cpu().numpy()
|
| 86 |
+
return audio_arr, self.bark_sampling_rate
|
| 87 |
+
|
| 88 |
+
@staticmethod
|
| 89 |
+
def numpy_to_audio_segment(audio_arr, sampling_rate):
|
| 90 |
+
"""
|
| 91 |
+
Convert numpy array to AudioSegment.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
audio_arr (np.array): Numpy array of audio data.
|
| 95 |
+
sampling_rate (int): Sampling rate of the audio.
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
AudioSegment: Converted audio segment.
|
| 99 |
+
"""
|
| 100 |
+
audio_int16 = (audio_arr * 32767).astype(np.int16)
|
| 101 |
+
byte_io = io.BytesIO()
|
| 102 |
+
wavfile.write(byte_io, sampling_rate, audio_int16)
|
| 103 |
+
byte_io.seek(0)
|
| 104 |
+
return AudioSegment.from_wav(byte_io)
|
| 105 |
+
|
| 106 |
+
def generate_audio(self):
|
| 107 |
+
"""
|
| 108 |
+
Converts the transcript into audio and saves it to a file.
|
| 109 |
+
|
| 110 |
+
Returns:
|
| 111 |
+
str: Path to the saved audio file.
|
| 112 |
+
"""
|
| 113 |
+
transcript = self.load_transcript()
|
| 114 |
+
final_audio = None
|
| 115 |
+
|
| 116 |
+
for speaker, text in tqdm(transcript, desc="Generating podcast segments", unit="segment"):
|
| 117 |
+
if speaker == "Speaker 1":
|
| 118 |
+
audio_arr, rate = self.generate_speaker1_audio(text)
|
| 119 |
+
else: # Speaker 2
|
| 120 |
+
audio_arr, rate = self.generate_speaker2_audio(text)
|
| 121 |
+
|
| 122 |
+
# Convert to AudioSegment
|
| 123 |
+
audio_segment = self.numpy_to_audio_segment(audio_arr, rate)
|
| 124 |
+
|
| 125 |
+
# Add segment to final audio
|
| 126 |
+
if final_audio is None:
|
| 127 |
+
final_audio = audio_segment
|
| 128 |
+
else:
|
| 129 |
+
final_audio += audio_segment
|
| 130 |
+
|
| 131 |
+
# Export final audio to MP3
|
| 132 |
+
final_audio.export(self.output_audio_path, format="mp3", bitrate="192k", parameters=["-q:a", "0"])
|
| 133 |
+
return self.output_audio_path
|