Spaces:
Running
Running
Update generate_audio.py
Browse files- generate_audio.py +37 -34
generate_audio.py
CHANGED
|
@@ -31,15 +31,16 @@ class TTSGenerator:
|
|
| 31 |
|
| 32 |
# Set device
|
| 33 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
-
|
|
|
|
| 35 |
# Load Parler model and tokenizer for Speaker 1
|
| 36 |
-
self.parler_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/
|
| 37 |
-
self.parler_tokenizer = AutoTokenizer.from_pretrained("parler-tts/
|
| 38 |
self.speaker1_description = """
|
| 39 |
-
Laura's voice is expressive and dramatic in delivery, speaking at a moderately fast pace with a very close recording that almost has no background noise.
|
| 40 |
"""
|
| 41 |
self.speaker2_description = """
|
| 42 |
-
Gary's voice is expressive and dramatic in delivery, speaking at a moderately fast pace with a very close recording that almost has no background noise.
|
| 43 |
"""
|
| 44 |
|
| 45 |
# Load Bark model and processor for Speaker 2
|
|
@@ -76,20 +77,21 @@ class TTSGenerator:
|
|
| 76 |
# generation = self.parler_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
| 77 |
# audio_arr = generation.cpu().numpy().squeeze()
|
| 78 |
# return audio_arr, self.parler_model.config.sampling_rate
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
| 93 |
return audio_arr, self.parler_model.config.sampling_rate
|
| 94 |
|
| 95 |
#@spaces.GPU(duration=30)
|
|
@@ -104,21 +106,21 @@ class TTSGenerator:
|
|
| 104 |
np.array: Audio array.
|
| 105 |
int: Sampling rate.
|
| 106 |
"""
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
# inputs = self.bark_processor(text, voice_preset=self.voice_preset).to(self.device)
|
| 124 |
# speech_output = self.bark_model.generate(**inputs, temperature=0.9, semantic_temperature=0.8)
|
|
@@ -175,6 +177,7 @@ class TTSGenerator:
|
|
| 175 |
final_audio = audio_segment
|
| 176 |
else:
|
| 177 |
final_audio += audio_segment
|
|
|
|
| 178 |
|
| 179 |
# Export final audio to MP3
|
| 180 |
final_audio.export(self.output_audio_path, format="mp3", bitrate="192k", parameters=["-q:a", "0"])
|
|
|
|
| 31 |
|
| 32 |
# Set device
|
| 33 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
+
|
| 35 |
+
|
| 36 |
# Load Parler model and tokenizer for Speaker 1
|
| 37 |
+
self.parler_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler_tts_mini_v0.1").to(self.device)
|
| 38 |
+
self.parler_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler_tts_mini_v0.1")
|
| 39 |
self.speaker1_description = """
|
| 40 |
+
Laura's voice is expressive and dramatic in delivery, speaking at a moderately fast pace with a very close recording that almost has no background noise and very clear audio.
|
| 41 |
"""
|
| 42 |
self.speaker2_description = """
|
| 43 |
+
Gary's voice is expressive and dramatic in delivery, speaking at a moderately fast pace with a very close recording that almost has no background noise and very clear audio.
|
| 44 |
"""
|
| 45 |
|
| 46 |
# Load Bark model and processor for Speaker 2
|
|
|
|
| 77 |
# generation = self.parler_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
| 78 |
# audio_arr = generation.cpu().numpy().squeeze()
|
| 79 |
# return audio_arr, self.parler_model.config.sampling_rate
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
input_ids = self.parler_tokenizer(self.speaker1_description, return_tensors="pt", padding=True).input_ids.to(self.device)
|
| 82 |
+
attention_mask_input = self.parler_tokenizer(self.speaker1_description, return_tensors="pt", padding=True).attention_mask.to(self.device)
|
| 83 |
+
|
| 84 |
+
prompt_input_ids = self.parler_tokenizer(text, return_tensors="pt", padding=True).input_ids.to(self.device)
|
| 85 |
+
attention_mask_prompt = self.parler_tokenizer(text, return_tensors="pt", padding=True).attention_mask.to(self.device)
|
| 86 |
+
|
| 87 |
+
# Pass all required arguments to generate() for reliable behavior
|
| 88 |
+
generation = self.parler_model.generate(
|
| 89 |
+
input_ids=input_ids,
|
| 90 |
+
attention_mask=attention_mask_input, # Set attention mask for input IDs
|
| 91 |
+
prompt_input_ids=prompt_input_ids,
|
| 92 |
+
prompt_attention_mask=attention_mask_prompt # Set prompt attention mask
|
| 93 |
+
)
|
| 94 |
+
audio_arr = generation.cpu().numpy().squeeze()
|
| 95 |
return audio_arr, self.parler_model.config.sampling_rate
|
| 96 |
|
| 97 |
#@spaces.GPU(duration=30)
|
|
|
|
| 106 |
np.array: Audio array.
|
| 107 |
int: Sampling rate.
|
| 108 |
"""
|
| 109 |
+
with torch.no_grad():
|
| 110 |
+
input_ids = self.parler_tokenizer(self.speaker2_description, return_tensors="pt", padding=True).input_ids.to(self.device)
|
| 111 |
+
attention_mask_input = self.parler_tokenizer(self.speaker1_description, return_tensors="pt", padding=True).attention_mask.to(self.device)
|
| 112 |
+
|
| 113 |
+
prompt_input_ids = self.parler_tokenizer(text, return_tensors="pt", padding=True).input_ids.to(self.device)
|
| 114 |
+
attention_mask_prompt = self.parler_tokenizer(text, return_tensors="pt", padding=True).attention_mask.to(self.device)
|
| 115 |
+
|
| 116 |
+
# Pass all required arguments to generate() for reliable behavior
|
| 117 |
+
generation = self.parler_model.generate(
|
| 118 |
+
input_ids=input_ids,
|
| 119 |
+
attention_mask=attention_mask_input, # Set attention mask for input IDs
|
| 120 |
+
prompt_input_ids=prompt_input_ids,
|
| 121 |
+
prompt_attention_mask=attention_mask_prompt # Set prompt attention mask
|
| 122 |
+
)
|
| 123 |
+
audio_arr = generation.cpu().numpy().squeeze()
|
| 124 |
|
| 125 |
# inputs = self.bark_processor(text, voice_preset=self.voice_preset).to(self.device)
|
| 126 |
# speech_output = self.bark_model.generate(**inputs, temperature=0.9, semantic_temperature=0.8)
|
|
|
|
| 177 |
final_audio = audio_segment
|
| 178 |
else:
|
| 179 |
final_audio += audio_segment
|
| 180 |
+
torch.cuda.empty_cache()
|
| 181 |
|
| 182 |
# Export final audio to MP3
|
| 183 |
final_audio.export(self.output_audio_path, format="mp3", bitrate="192k", parameters=["-q:a", "0"])
|