Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import AutoModel, AutoTokenizer
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
from huggingface_hub import InferenceClient
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Define your API key here
|
| 10 |
+
my_key = "your_api_key_here"
|
| 11 |
+
|
| 12 |
+
# Load tokenizer and model
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)
|
| 14 |
+
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2')
|
| 15 |
+
model.eval()
|
| 16 |
+
|
| 17 |
+
# Set device for model
|
| 18 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 19 |
+
model = model.to(device=device, dtype=torch.float16 if device == 'cuda' else torch.float32)
|
| 20 |
+
|
| 21 |
+
# Retrieve the API key from the environment
|
| 22 |
+
api_key = os.getenv("HF_API_KEY")
|
| 23 |
+
|
| 24 |
+
# Initialize the Hugging Face Inference client with the API key
|
| 25 |
+
client = InferenceClient(api_key=api_key)
|
| 26 |
+
|
| 27 |
+
# Streamlit UI setup
|
| 28 |
+
st.title("Image Questioning and Content Generation App")
|
| 29 |
+
st.write("Upload an image and ask a question. The model will respond with a description, and you can generate a song or story based on the response.")
|
| 30 |
+
|
| 31 |
+
# Upload an image
|
| 32 |
+
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
| 33 |
+
if uploaded_image:
|
| 34 |
+
image = Image.open(uploaded_image).convert('RGB')
|
| 35 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 36 |
+
|
| 37 |
+
# Text input for the question
|
| 38 |
+
question = st.text_input("Ask a question about the image")
|
| 39 |
+
if question and uploaded_image:
|
| 40 |
+
msgs = [{'role': 'user', 'content': question}]
|
| 41 |
+
|
| 42 |
+
# Model's response to the image question
|
| 43 |
+
with st.spinner("Processing..."):
|
| 44 |
+
res, context, _ = model.chat(
|
| 45 |
+
image=image,
|
| 46 |
+
msgs=msgs,
|
| 47 |
+
context=None,
|
| 48 |
+
tokenizer=tokenizer,
|
| 49 |
+
sampling=True,
|
| 50 |
+
temperature=0.7
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
st.write("Model's response:", res)
|
| 54 |
+
|
| 55 |
+
# Options for generating content based on the response
|
| 56 |
+
option = st.selectbox("Generate content based on the response", ["Choose...", "Write a Song", "Write a Story"])
|
| 57 |
+
|
| 58 |
+
if option != "Choose...":
|
| 59 |
+
# Create a message based on user choice
|
| 60 |
+
if option == "Write a Song":
|
| 61 |
+
messages = [{"role": "user", "content": f"Write a song about the following: {res}"}]
|
| 62 |
+
elif option == "Write a Story":
|
| 63 |
+
messages = [{"role": "user", "content": f"Write a story about the following: {res}"}]
|
| 64 |
+
|
| 65 |
+
# Stream the content generation
|
| 66 |
+
st.write(f"Generating {option.lower()}...")
|
| 67 |
+
|
| 68 |
+
stream = client.chat.completions.create(
|
| 69 |
+
model="meta-llama/Llama-3.2-3B-Instruct",
|
| 70 |
+
messages=messages,
|
| 71 |
+
max_tokens=500,
|
| 72 |
+
stream=True
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
generated_text = ""
|
| 76 |
+
for chunk in stream:
|
| 77 |
+
generated_text += chunk.choices[0].delta.content
|
| 78 |
+
st.write(generated_text) # Display each chunk as it's generated
|