Spaces:
Runtime error
Runtime error
Rearranging some of the figures
Browse files
app.py
CHANGED
|
@@ -18,12 +18,16 @@ def load_data():
|
|
| 18 |
def reload_example_text_data():
|
| 19 |
random_id = random.choice(val_data['id'])
|
| 20 |
tempdf = subset_df[subset_df['id']==random_id]
|
| 21 |
-
tempdf.
|
|
|
|
| 22 |
tempdf = tempdf[['iso', 'text', tokenizer_name]]
|
| 23 |
tempdf.columns=['ISO', 'Text', 'Num Tokens']
|
| 24 |
tempdf.sort_values(by='ISO', inplace=True)
|
| 25 |
st.session_state.examplesdf = tempdf
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
# TODO allow new tokenizers from HF
|
| 28 |
tokenizer_names_to_test = [
|
| 29 |
"openai/gpt4",
|
|
@@ -57,6 +61,8 @@ with st.sidebar:
|
|
| 57 |
val_data = load_data()
|
| 58 |
st.success(f'Data loaded: {len(val_data)}')
|
| 59 |
|
|
|
|
|
|
|
| 60 |
with st.expander('Data Source'):
|
| 61 |
st.write("The data in this figure is the validation set of the [Amazon Massive](https://huggingface.co/datasets/AmazonScience/massive/viewer/af-ZA/validation) dataset, which consists of 2033 short sentences and phrases translated into 51 different languages. Learn more about the dataset from [Amazon's blog post](https://www.amazon.science/blog/amazon-releases-51-language-dataset-for-language-understanding)")
|
| 62 |
|
|
@@ -91,34 +97,64 @@ with st.container():
|
|
| 91 |
if tokenizer_name in val_data.columns:
|
| 92 |
subset_df = val_data[val_data.lang.isin(languages)]
|
| 93 |
subset_data = [val_data[val_data.lang==_lang][tokenizer_name] for _lang in languages]
|
| 94 |
-
|
| 95 |
-
st.header('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
fig = ff.create_distplot(subset_data, group_labels=languages, show_hist=show_hist)
|
| 97 |
|
| 98 |
fig.update_layout(
|
| 99 |
-
title=dict(text=
|
| 100 |
-
# title=
|
| 101 |
xaxis_title="Number of Tokens",
|
| 102 |
yaxis_title="Density",
|
|
|
|
| 103 |
# title_font_family='"Source Sans Pro", sans-serif'
|
| 104 |
)
|
| 105 |
st.plotly_chart(fig, use_container_width=True)
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
for i, _lang in enumerate(languages):
|
| 110 |
-
metric_cols[i].metric(_lang, int(np.median(subset_df[subset_df.lang==_lang][tokenizer_name])))
|
| 111 |
|
| 112 |
|
| 113 |
st.subheader('Example Texts')
|
| 114 |
-
|
| 115 |
reload_example_text_data()
|
| 116 |
if st.button("๐ Randomly sample"):
|
| 117 |
reload_example_text_data()
|
| 118 |
-
|
| 119 |
st.dataframe(st.session_state.examplesdf) # Same as st.write(df)
|
| 120 |
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
|
| 124 |
|
|
@@ -126,6 +162,8 @@ with st.container():
|
|
| 126 |
|
| 127 |
|
| 128 |
|
|
|
|
|
|
|
| 129 |
with st.expander("About the project"):
|
| 130 |
st.write("The purpose of this project is to compare the tokenization length for different languages. For some tokenizers, tokenizing a message in one language may result in 10-20x more tokens than a comparable message in another language (e.g. try English vs. Burmese). This is part of a larger project of measuring inequality in NLP.")
|
| 131 |
|
|
|
|
| 18 |
def reload_example_text_data():
|
| 19 |
random_id = random.choice(val_data['id'])
|
| 20 |
tempdf = subset_df[subset_df['id']==random_id]
|
| 21 |
+
tempdf.rename(columns={'lang': 'Language'}, inplace=True)
|
| 22 |
+
tempdf.set_index('Language', inplace=True)
|
| 23 |
tempdf = tempdf[['iso', 'text', tokenizer_name]]
|
| 24 |
tempdf.columns=['ISO', 'Text', 'Num Tokens']
|
| 25 |
tempdf.sort_values(by='ISO', inplace=True)
|
| 26 |
st.session_state.examplesdf = tempdf
|
| 27 |
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
# TODO allow new tokenizers from HF
|
| 32 |
tokenizer_names_to_test = [
|
| 33 |
"openai/gpt4",
|
|
|
|
| 61 |
val_data = load_data()
|
| 62 |
st.success(f'Data loaded: {len(val_data)}')
|
| 63 |
|
| 64 |
+
# st.write(val_data.columns, val_data.head())
|
| 65 |
+
|
| 66 |
with st.expander('Data Source'):
|
| 67 |
st.write("The data in this figure is the validation set of the [Amazon Massive](https://huggingface.co/datasets/AmazonScience/massive/viewer/af-ZA/validation) dataset, which consists of 2033 short sentences and phrases translated into 51 different languages. Learn more about the dataset from [Amazon's blog post](https://www.amazon.science/blog/amazon-releases-51-language-dataset-for-language-understanding)")
|
| 68 |
|
|
|
|
| 97 |
if tokenizer_name in val_data.columns:
|
| 98 |
subset_df = val_data[val_data.lang.isin(languages)]
|
| 99 |
subset_data = [val_data[val_data.lang==_lang][tokenizer_name] for _lang in languages]
|
| 100 |
+
|
| 101 |
+
# st.header(f'Comparing languages for {tokenizer_name}')
|
| 102 |
+
|
| 103 |
+
st.subheader(f'Median Token Length for `{tokenizer_name}`')
|
| 104 |
+
metric_cols = st.columns(len(languages))
|
| 105 |
+
for i, _lang in enumerate(languages):
|
| 106 |
+
metric_cols[i].metric(_lang, int(np.median(subset_df[subset_df.lang==_lang][tokenizer_name])))
|
| 107 |
+
|
| 108 |
+
|
| 109 |
fig = ff.create_distplot(subset_data, group_labels=languages, show_hist=show_hist)
|
| 110 |
|
| 111 |
fig.update_layout(
|
| 112 |
+
title=dict(text='Token Distribution', font=dict(size=25), automargin=True, yref='paper', ),
|
| 113 |
+
# title='Distribution of tokens',
|
| 114 |
xaxis_title="Number of Tokens",
|
| 115 |
yaxis_title="Density",
|
| 116 |
+
height=500
|
| 117 |
# title_font_family='"Source Sans Pro", sans-serif'
|
| 118 |
)
|
| 119 |
st.plotly_chart(fig, use_container_width=True)
|
| 120 |
|
| 121 |
+
|
| 122 |
+
|
|
|
|
|
|
|
| 123 |
|
| 124 |
|
| 125 |
st.subheader('Example Texts')
|
|
|
|
| 126 |
reload_example_text_data()
|
| 127 |
if st.button("๐ Randomly sample"):
|
| 128 |
reload_example_text_data()
|
|
|
|
| 129 |
st.dataframe(st.session_state.examplesdf) # Same as st.write(df)
|
| 130 |
|
| 131 |
|
| 132 |
+
# val_median_data = val_data.groupby('lang')[tokenizer_name].apply(np.median)
|
| 133 |
+
# val_median_data = val_median_data.sort_values(ascending=False)
|
| 134 |
+
# val_median_data = val_median_data.reset_index()
|
| 135 |
+
# # val_median_data = val_median_data[val_median_data.lang.isin(languages)]
|
| 136 |
+
# val_median_data[tokenizer_name] = val_median_data[tokenizer_name].astype(int)
|
| 137 |
+
# val_median_data.columns = ['Language', 'Median Number of Tokens']
|
| 138 |
+
# # st.write(val_median_data.head())
|
| 139 |
+
# bar_fig = px.bar(
|
| 140 |
+
# val_median_data,
|
| 141 |
+
# y='Language',
|
| 142 |
+
# x='Median Number of Tokens',
|
| 143 |
+
# text_auto='d',
|
| 144 |
+
# orientation='h',
|
| 145 |
+
# hover_data=val_median_data.columns,
|
| 146 |
+
# height=1000,
|
| 147 |
+
# )
|
| 148 |
+
# bar_fig.update_traces(textfont_size=12, textangle=0, cliponaxis=False)
|
| 149 |
+
# bar_fig.update_layout(
|
| 150 |
+
# title=dict(text='Comparison of median token lengths',
|
| 151 |
+
# font=dict(size=20),
|
| 152 |
+
# automargin=True, yref='paper', ),
|
| 153 |
+
# )
|
| 154 |
+
# st.plotly_chart(bar_fig, use_container_width=True)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
|
| 159 |
|
| 160 |
|
|
|
|
| 162 |
|
| 163 |
|
| 164 |
|
| 165 |
+
|
| 166 |
+
|
| 167 |
with st.expander("About the project"):
|
| 168 |
st.write("The purpose of this project is to compare the tokenization length for different languages. For some tokenizers, tokenizing a message in one language may result in 10-20x more tokens than a comparable message in another language (e.g. try English vs. Burmese). This is part of a larger project of measuring inequality in NLP.")
|
| 169 |
|