Spaces:
Runtime error
Runtime error
改修
Browse files- app.py +99 -67
- requirements.txt +2 -2
app.py
CHANGED
|
@@ -1,86 +1,118 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import firebase_admin
|
| 3 |
-
from firebase_admin import credentials, storage
|
| 4 |
-
import tempfile
|
| 5 |
-
import os
|
| 6 |
import io
|
| 7 |
from PIL import Image
|
| 8 |
import base64
|
| 9 |
-
from scripts.process_utils import initialize, process_image_as_base64
|
| 10 |
from scripts.anime import init_model
|
| 11 |
from scripts.generate_prompt import load_wd14_tagger_model
|
| 12 |
-
import uuid
|
| 13 |
-
import time
|
| 14 |
|
| 15 |
# 初期化
|
| 16 |
-
initialize(_use_local=False, use_gpu=True, use_dotenv=
|
| 17 |
init_model(use_local=False)
|
| 18 |
load_wd14_tagger_model()
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
|
|
|
| 32 |
sotai_image = Image.open(io.BytesIO(base64.b64decode(sotai_image_data)))
|
| 33 |
sketch_image = Image.open(io.BytesIO(base64.b64decode(sketch_image_data)))
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
# 一時ファイルを作成
|
| 40 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
| 41 |
-
image.save(temp_file, format="PNG")
|
| 42 |
-
temp_file_path = temp_file.name
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
def process_image(input_image, mode, weight1, weight2):
|
| 60 |
-
# 既存の画像処理ロジック
|
| 61 |
-
sotai_image, sketch_image = process_image_as_base64(input_image, mode, weight1, weight2)
|
| 62 |
-
|
| 63 |
-
# Firebase に画像ペアを保存し、URLを取得
|
| 64 |
-
urls = save_image_pair_to_firebase(sotai_image, sketch_image)
|
| 65 |
-
|
| 66 |
-
return urls['sotai'], urls['sketch']
|
| 67 |
|
| 68 |
-
# Gradio インターフェースの定義
|
| 69 |
-
iface = gr.Interface(
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
)
|
| 84 |
|
| 85 |
-
# Hugging Face Spacesでデプロイする場合
|
| 86 |
-
iface.queue().launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import io
|
| 3 |
from PIL import Image
|
| 4 |
import base64
|
| 5 |
+
from scripts.process_utils import initialize, process_image_as_base64, image_to_base64
|
| 6 |
from scripts.anime import init_model
|
| 7 |
from scripts.generate_prompt import load_wd14_tagger_model
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# 初期化
|
| 10 |
+
initialize(_use_local=False, use_gpu=True, use_dotenv=True)
|
| 11 |
init_model(use_local=False)
|
| 12 |
load_wd14_tagger_model()
|
| 13 |
|
| 14 |
+
def process_image(input_image, mode, weight1=None, weight2=None):
|
| 15 |
+
print(f"Processing image with mode={mode}, weight1={weight1}, weight2={weight2}")
|
| 16 |
+
# 既存の画像処理ロジック
|
| 17 |
+
if mode == "original":
|
| 18 |
+
sotai_image, sketch_image = process_image_as_base64(input_image, mode, None, None)
|
| 19 |
+
elif mode == "refine":
|
| 20 |
+
sotai_image, sketch_image = process_image_as_base64(input_image, mode, weight1, weight2)
|
| 21 |
+
|
| 22 |
+
# テスト用に、Base64データを返す
|
| 23 |
+
sotai_image = image_to_base64(input_image)
|
| 24 |
+
sketch_image = image_to_base64(input_image)
|
| 25 |
+
|
| 26 |
+
return sotai_image, sketch_image
|
| 27 |
|
| 28 |
+
def mix_images(sotai_image_data, sketch_image_data, opacity1, opacity2):
|
| 29 |
+
# Base64からPILイメージに変換
|
| 30 |
sotai_image = Image.open(io.BytesIO(base64.b64decode(sotai_image_data)))
|
| 31 |
sketch_image = Image.open(io.BytesIO(base64.b64decode(sketch_image_data)))
|
| 32 |
+
# 画像を合成
|
| 33 |
+
mixed_image = Image.new('RGBA', sotai_image.size, (0, 0, 0, 0))
|
| 34 |
+
opacity_mask1 = Image.new('L', sotai_image.size, int(opacity1 * 255))
|
| 35 |
+
opacity_mask2 = Image.new('L', sotai_image.size, int(opacity2 * 255))
|
| 36 |
+
mixed_image.paste(sotai_image, (0, 0), mask=opacity_mask1)
|
| 37 |
+
mixed_image.paste(sketch_image, (0, 0), mask=opacity_mask2)
|
| 38 |
|
| 39 |
+
return mixed_image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
with gr.Blocks() as demo:
|
| 42 |
+
# title
|
| 43 |
+
gr.HTML("<h1>Image2Body demo</h1>")
|
| 44 |
+
# description
|
| 45 |
+
gr.HTML("<p>Upload an image and select processing options to generate body and sketch images.</p>")
|
| 46 |
+
# interface
|
| 47 |
+
submit = None
|
| 48 |
+
with gr.Row():
|
| 49 |
+
with gr.Column() as input_col:
|
| 50 |
+
with gr.Tab("original"):
|
| 51 |
+
original_input = [
|
| 52 |
+
gr.Image(type="pil", label="Input Image"),
|
| 53 |
+
gr.Text("original", label="Mode", visible=False),
|
| 54 |
+
]
|
| 55 |
+
original_submit = gr.Button("Submit", variant="primary")
|
| 56 |
+
with gr.Tab("refine"):
|
| 57 |
+
refine_input = [
|
| 58 |
+
gr.Image(type="pil", label="Input Image"),
|
| 59 |
+
gr.Text("refine", label="Mode", visible=False),
|
| 60 |
+
gr.Slider(0, 2, value=0.6, step=0.05, label="Weight 1 (Sketch)"),
|
| 61 |
+
gr.Slider(0, 1, value=0.05, step=0.025, label="Weight 2 (Body)")
|
| 62 |
+
]
|
| 63 |
+
refine_submit = gr.Button("Submit", variant="primary")
|
| 64 |
+
with gr.Column() as output_col:
|
| 65 |
+
sotai_image_data = gr.Text(label="Sotai Image data", visible=False)
|
| 66 |
+
sketch_image_data = gr.Text(label="Sketch Image data", visible=False)
|
| 67 |
+
mixed_image = gr.Image(label="Output Image", elem_id="output_image")
|
| 68 |
+
opacity_slider1 = gr.Slider(0, 1, value=0.5, step=0.05, label="Opacity (Sotai)")
|
| 69 |
+
opacity_slider2 = gr.Slider(0, 1, value=0.5, step=0.05, label="Opacity (Sketch)")
|
| 70 |
+
|
| 71 |
+
original_submit.click(
|
| 72 |
+
process_image,
|
| 73 |
+
inputs=original_input,
|
| 74 |
+
outputs=[sotai_image_data, sketch_image_data]
|
| 75 |
+
)
|
| 76 |
+
refine_submit.click(
|
| 77 |
+
process_image,
|
| 78 |
+
inputs=refine_input,
|
| 79 |
+
outputs=[sotai_image_data, sketch_image_data]
|
| 80 |
+
)
|
| 81 |
+
sotai_image_data.change(
|
| 82 |
+
mix_images,
|
| 83 |
+
inputs=[sotai_image_data, sketch_image_data, opacity_slider1, opacity_slider2],
|
| 84 |
+
outputs=mixed_image
|
| 85 |
+
)
|
| 86 |
+
opacity_slider1.change(
|
| 87 |
+
mix_images,
|
| 88 |
+
inputs=[sotai_image_data, sketch_image_data, opacity_slider1, opacity_slider2],
|
| 89 |
+
outputs=mixed_image
|
| 90 |
+
)
|
| 91 |
+
opacity_slider2.change(
|
| 92 |
+
mix_images,
|
| 93 |
+
inputs=[sotai_image_data, sketch_image_data, opacity_slider1, opacity_slider2],
|
| 94 |
+
outputs=mixed_image
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
demo.launch()
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
# # Gradio インターフェースの定義
|
| 101 |
+
# iface = gr.Interface(
|
| 102 |
+
# fn=process_image,
|
| 103 |
+
# inputs=[
|
| 104 |
+
# gr.Image(type="pil", label="Input Image"),
|
| 105 |
+
# gr.Radio(["original", "refine"], label="Mode", value="original"),
|
| 106 |
+
# gr.Slider(0, 2, value=0.6, step=0.05, label="Weight 1 (Sketch)"),
|
| 107 |
+
# gr.Slider(0, 1, value=0.05, step=0.025, label="Weight 2 (Body)")
|
| 108 |
+
# ],
|
| 109 |
+
# outputs=[
|
| 110 |
+
# gr.Text(label="Sotai Image URL"),
|
| 111 |
+
# gr.Text(label="Sketch Image URL")
|
| 112 |
+
# ],
|
| 113 |
+
# title="Image2Body API",
|
| 114 |
+
# description="Upload an image and select processing options to generate body and sketch images."
|
| 115 |
+
# )
|
| 116 |
|
| 117 |
+
# # Hugging Face Spacesでデプロイする場合
|
| 118 |
+
# iface.queue().launch()
|
requirements.txt
CHANGED
|
@@ -7,8 +7,8 @@ diffusers==0.27.0 # pth file cannot be loaded in the latest version
|
|
| 7 |
Flask==3.0.3
|
| 8 |
Flask-Cors==4.0.0
|
| 9 |
Flask-SocketIO==5.3.6
|
| 10 |
-
gradio==
|
| 11 |
-
|
| 12 |
kornia==0.7.1
|
| 13 |
numpy==1.23.5
|
| 14 |
opencv-python==4.9.0.80
|
|
|
|
| 7 |
Flask==3.0.3
|
| 8 |
Flask-Cors==4.0.0
|
| 9 |
Flask-SocketIO==5.3.6
|
| 10 |
+
gradio==5.5.0
|
| 11 |
+
huggingface-hub==0.25.2
|
| 12 |
kornia==0.7.1
|
| 13 |
numpy==1.23.5
|
| 14 |
opencv-python==4.9.0.80
|