Spaces:
Runtime error
Runtime error
rm .to(device)
Browse files- scripts/process_utils.py +9 -10
scripts/process_utils.py
CHANGED
|
@@ -54,7 +54,6 @@ def load_lora(pipeline, lora_path, alpha=0.75):
|
|
| 54 |
|
| 55 |
def initialize_sotai_model():
|
| 56 |
global device, torch_dtype
|
| 57 |
-
print(f"Device: {device}, torch_dtype: {torch_dtype}")
|
| 58 |
|
| 59 |
sotai_sd_model_path = get_file_path(os.environ["sotai_sd_model_name"], subfolder=os.environ["sd_models_dir"])
|
| 60 |
controlnet_path1 = get_file_path(os.environ["controlnet_name1"], subfolder=os.environ["controlnet_dir2"])
|
|
@@ -66,19 +65,19 @@ def initialize_sotai_model():
|
|
| 66 |
sotai_sd_model_path,
|
| 67 |
torch_dtype=torch_dtype,
|
| 68 |
use_safetensors=True
|
| 69 |
-
)
|
| 70 |
|
| 71 |
# Load the ControlNet model
|
| 72 |
controlnet1 = ControlNetModel.from_single_file(
|
| 73 |
controlnet_path1,
|
| 74 |
torch_dtype=torch_dtype
|
| 75 |
-
)
|
| 76 |
|
| 77 |
# Load the ControlNet model
|
| 78 |
controlnet2 = ControlNetModel.from_single_file(
|
| 79 |
controlnet_path2,
|
| 80 |
torch_dtype=torch_dtype
|
| 81 |
-
)
|
| 82 |
|
| 83 |
# Create the ControlNet pipeline
|
| 84 |
sotai_gen_pipe = StableDiffusionControlNetPipeline(
|
|
@@ -90,7 +89,7 @@ def initialize_sotai_model():
|
|
| 90 |
safety_checker=sd_pipe.safety_checker,
|
| 91 |
feature_extractor=sd_pipe.feature_extractor,
|
| 92 |
controlnet=[controlnet1, controlnet2]
|
| 93 |
-
)
|
| 94 |
|
| 95 |
# LoRAの適用
|
| 96 |
lora_names = [
|
|
@@ -120,23 +119,23 @@ def initialize_refine_model():
|
|
| 120 |
refine_sd_model_path,
|
| 121 |
torch_dtype=torch_dtype,
|
| 122 |
use_safetensors=True
|
| 123 |
-
)
|
| 124 |
|
| 125 |
# controlnet_path = "models/cn/control_v11p_sd15_canny.pth"
|
| 126 |
controlnet1 = ControlNetModel.from_single_file(
|
| 127 |
controlnet_path3,
|
| 128 |
torch_dtype=torch_dtype
|
| 129 |
-
)
|
| 130 |
|
| 131 |
# Load the ControlNet model
|
| 132 |
controlnet2 = ControlNetModel.from_single_file(
|
| 133 |
controlnet_path4,
|
| 134 |
torch_dtype=torch_dtype
|
| 135 |
-
)
|
| 136 |
|
| 137 |
# Create the ControlNet pipeline
|
| 138 |
refine_gen_pipe = StableDiffusionControlNetPipeline(
|
| 139 |
-
vae=AutoencoderKL.from_single_file(vae_path, torch_dtype=torch_dtype)
|
| 140 |
text_encoder=sd_pipe.text_encoder,
|
| 141 |
tokenizer=sd_pipe.tokenizer,
|
| 142 |
unet=sd_pipe.unet,
|
|
@@ -144,7 +143,7 @@ def initialize_refine_model():
|
|
| 144 |
safety_checker=sd_pipe.safety_checker,
|
| 145 |
feature_extractor=sd_pipe.feature_extractor,
|
| 146 |
controlnet=[controlnet1, controlnet2], # 複数のControlNetを指定
|
| 147 |
-
)
|
| 148 |
|
| 149 |
# スケジューラーの設定
|
| 150 |
refine_gen_pipe.scheduler = UniPCMultistepScheduler.from_config(refine_gen_pipe.scheduler.config)
|
|
|
|
| 54 |
|
| 55 |
def initialize_sotai_model():
|
| 56 |
global device, torch_dtype
|
|
|
|
| 57 |
|
| 58 |
sotai_sd_model_path = get_file_path(os.environ["sotai_sd_model_name"], subfolder=os.environ["sd_models_dir"])
|
| 59 |
controlnet_path1 = get_file_path(os.environ["controlnet_name1"], subfolder=os.environ["controlnet_dir2"])
|
|
|
|
| 65 |
sotai_sd_model_path,
|
| 66 |
torch_dtype=torch_dtype,
|
| 67 |
use_safetensors=True
|
| 68 |
+
)
|
| 69 |
|
| 70 |
# Load the ControlNet model
|
| 71 |
controlnet1 = ControlNetModel.from_single_file(
|
| 72 |
controlnet_path1,
|
| 73 |
torch_dtype=torch_dtype
|
| 74 |
+
)
|
| 75 |
|
| 76 |
# Load the ControlNet model
|
| 77 |
controlnet2 = ControlNetModel.from_single_file(
|
| 78 |
controlnet_path2,
|
| 79 |
torch_dtype=torch_dtype
|
| 80 |
+
)
|
| 81 |
|
| 82 |
# Create the ControlNet pipeline
|
| 83 |
sotai_gen_pipe = StableDiffusionControlNetPipeline(
|
|
|
|
| 89 |
safety_checker=sd_pipe.safety_checker,
|
| 90 |
feature_extractor=sd_pipe.feature_extractor,
|
| 91 |
controlnet=[controlnet1, controlnet2]
|
| 92 |
+
)
|
| 93 |
|
| 94 |
# LoRAの適用
|
| 95 |
lora_names = [
|
|
|
|
| 119 |
refine_sd_model_path,
|
| 120 |
torch_dtype=torch_dtype,
|
| 121 |
use_safetensors=True
|
| 122 |
+
)
|
| 123 |
|
| 124 |
# controlnet_path = "models/cn/control_v11p_sd15_canny.pth"
|
| 125 |
controlnet1 = ControlNetModel.from_single_file(
|
| 126 |
controlnet_path3,
|
| 127 |
torch_dtype=torch_dtype
|
| 128 |
+
)
|
| 129 |
|
| 130 |
# Load the ControlNet model
|
| 131 |
controlnet2 = ControlNetModel.from_single_file(
|
| 132 |
controlnet_path4,
|
| 133 |
torch_dtype=torch_dtype
|
| 134 |
+
)
|
| 135 |
|
| 136 |
# Create the ControlNet pipeline
|
| 137 |
refine_gen_pipe = StableDiffusionControlNetPipeline(
|
| 138 |
+
vae=AutoencoderKL.from_single_file(vae_path, torch_dtype=torch_dtype),
|
| 139 |
text_encoder=sd_pipe.text_encoder,
|
| 140 |
tokenizer=sd_pipe.tokenizer,
|
| 141 |
unet=sd_pipe.unet,
|
|
|
|
| 143 |
safety_checker=sd_pipe.safety_checker,
|
| 144 |
feature_extractor=sd_pipe.feature_extractor,
|
| 145 |
controlnet=[controlnet1, controlnet2], # 複数のControlNetを指定
|
| 146 |
+
)
|
| 147 |
|
| 148 |
# スケジューラーの設定
|
| 149 |
refine_gen_pipe.scheduler = UniPCMultistepScheduler.from_config(refine_gen_pipe.scheduler.config)
|