Spaces:
Runtime error
Runtime error
- scripts/generate_prompt.py +0 -5
- scripts/process_utils.py +2 -3
scripts/generate_prompt.py
CHANGED
|
@@ -2,15 +2,11 @@ import csv
|
|
| 2 |
import os
|
| 3 |
import cv2
|
| 4 |
import numpy as np
|
| 5 |
-
import tensorflow as tf
|
| 6 |
from tensorflow.keras.layers import TFSMLayer
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
|
| 9 |
import spaces
|
| 10 |
|
| 11 |
-
# TensorFlowがGPUを使用しないように設定
|
| 12 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 13 |
-
|
| 14 |
# 画像サイズの設定
|
| 15 |
IMAGE_SIZE = 448
|
| 16 |
|
|
@@ -40,7 +36,6 @@ def download_model_files(repo_id, model_dir, sub_dir, files, sub_files):
|
|
| 40 |
for file in sub_files:
|
| 41 |
hf_hub_download(repo_id, file, subfolder=sub_dir, cache_dir=os.path.join(model_dir, sub_dir), force_download=True, force_filename=file)
|
| 42 |
|
| 43 |
-
@spaces.GPU
|
| 44 |
def load_wd14_tagger_model():
|
| 45 |
"""WD14タグ付けモデルをロード"""
|
| 46 |
model_dir = "wd14_tagger_model"
|
|
|
|
| 2 |
import os
|
| 3 |
import cv2
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
from tensorflow.keras.layers import TFSMLayer
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
import spaces
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
# 画像サイズの設定
|
| 11 |
IMAGE_SIZE = 448
|
| 12 |
|
|
|
|
| 36 |
for file in sub_files:
|
| 37 |
hf_hub_download(repo_id, file, subfolder=sub_dir, cache_dir=os.path.join(model_dir, sub_dir), force_download=True, force_filename=file)
|
| 38 |
|
|
|
|
| 39 |
def load_wd14_tagger_model():
|
| 40 |
"""WD14タグ付けモデルをロード"""
|
| 41 |
model_dir = "wd14_tagger_model"
|
scripts/process_utils.py
CHANGED
|
@@ -43,7 +43,7 @@ def initialize(_use_local=False, use_gpu=False, use_dotenv=False):
|
|
| 43 |
print(f"\nDevice: {device}, Local model: {_use_local}\n")
|
| 44 |
|
| 45 |
init_model(use_local)
|
| 46 |
-
model = load_wd14_tagger_model()
|
| 47 |
sotai_gen_pipe = initialize_sotai_model()
|
| 48 |
refine_gen_pipe = initialize_refine_model()
|
| 49 |
|
|
@@ -154,8 +154,7 @@ def initialize_refine_model():
|
|
| 154 |
def get_wd_tags(images: list) -> list:
|
| 155 |
global model
|
| 156 |
if model is None:
|
| 157 |
-
|
| 158 |
-
# initialize()
|
| 159 |
preprocessed_images = [wd14_preprocess_image(img) for img in images]
|
| 160 |
preprocessed_images = np.array(preprocessed_images)
|
| 161 |
return generate_tags(preprocessed_images, os.environ["wd_model_name"], model)
|
|
|
|
| 43 |
print(f"\nDevice: {device}, Local model: {_use_local}\n")
|
| 44 |
|
| 45 |
init_model(use_local)
|
| 46 |
+
# model = load_wd14_tagger_model()
|
| 47 |
sotai_gen_pipe = initialize_sotai_model()
|
| 48 |
refine_gen_pipe = initialize_refine_model()
|
| 49 |
|
|
|
|
| 154 |
def get_wd_tags(images: list) -> list:
|
| 155 |
global model
|
| 156 |
if model is None:
|
| 157 |
+
model = load_wd14_tagger_model()
|
|
|
|
| 158 |
preprocessed_images = [wd14_preprocess_image(img) for img in images]
|
| 159 |
preprocessed_images = np.array(preprocessed_images)
|
| 160 |
return generate_tags(preprocessed_images, os.environ["wd_model_name"], model)
|