Spaces:
Running
on
Zero
Running
on
Zero
LivePortrait2
/
stf
/stf-api-alternative
/pytriton
/examples
/huggingface_stable_diffusion
/client.py
| #!/usr/bin/env python3 | |
| # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Client for Stable Diffusion 1.5.""" | |
| import argparse | |
| import base64 | |
| import io | |
| import logging | |
| import pathlib | |
| import numpy as np | |
| from PIL import Image # pytype: disable=import-error | |
| from pytriton.client import ModelClient | |
| logger = logging.getLogger("examples.huggingface_stable_diffusion.client") | |
| def main(): | |
| parser = argparse.ArgumentParser(description=__doc__) | |
| parser.add_argument( | |
| "--url", | |
| default="localhost", | |
| help=( | |
| "Url to Triton server (ex. grpc://localhost:8001)." | |
| "HTTP protocol with default port is used if parameter is not provided" | |
| ), | |
| required=False, | |
| ) | |
| parser.add_argument( | |
| "--init-timeout-s", | |
| type=float, | |
| default=600.0, | |
| help="Server and model ready state timeout in seconds", | |
| required=False, | |
| ) | |
| parser.add_argument( | |
| "--iterations", | |
| type=int, | |
| default=1, | |
| help="Number of requests per client.", | |
| required=False, | |
| ) | |
| parser.add_argument( | |
| "--results-path", | |
| type=str, | |
| default="results", | |
| help="Path to folder where images should be stored.", | |
| required=False, | |
| ) | |
| parser.add_argument( | |
| "--verbose", | |
| action="store_true", | |
| default=False, | |
| ) | |
| args = parser.parse_args() | |
| log_level = logging.DEBUG if args.verbose else logging.INFO | |
| logging.basicConfig(level=log_level, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") | |
| prompts = [ | |
| "A photo of an astronaut riding a horse on mars", | |
| "An image of a squirrel in Picasso style", | |
| "A running dog in the fields of trees in Manga style", | |
| ] | |
| img_size = np.array([[512]]) | |
| results_path = pathlib.Path(args.results_path) | |
| results_path.mkdir(parents=True, exist_ok=True) | |
| with ModelClient(args.url, "StableDiffusion_1_5", init_timeout_s=args.init_timeout_s) as client: | |
| for req_idx in range(1, args.iterations + 1): | |
| logger.debug(f"Sending request ({req_idx}).") | |
| prompt_id = req_idx % len(prompts) | |
| prompt = prompts[prompt_id] | |
| prompt = np.array([[prompt]]) | |
| prompt = np.char.encode(prompt, "utf-8") | |
| logger.info(f"Prompt ({req_idx}): {prompt}") | |
| logger.info(f"Image size ({req_idx}): {img_size}") | |
| result_dict = client.infer_batch(prompt=prompt, img_size=img_size) | |
| logger.debug(f"Result for for request ({req_idx}).") | |
| for idx, image in enumerate(result_dict["image"]): | |
| file_idx = req_idx + idx | |
| file_path = results_path / str(file_idx) / "image.jpeg" | |
| file_path.parent.mkdir(parents=True, exist_ok=True) | |
| msg = base64.b64decode(image[0]) | |
| buffer = io.BytesIO(msg) | |
| image = Image.open(buffer) | |
| with file_path.open("wb") as fp: | |
| image.save(fp) | |
| logger.info(f"Image saved to {file_path}") | |
| if __name__ == "__main__": | |
| main() | |