Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Simple classifier example based on Hugging Face JAX BERT model.""" | |
| import logging | |
| import numpy as np | |
| from transformers import BertTokenizer, FlaxBertModel # pytype: disable=import-error | |
| from pytriton.decorators import batch | |
| from pytriton.model_config import ModelConfig, Tensor | |
| from pytriton.triton import Triton | |
| logger = logging.getLogger("examples.huggingface_bert_jax.server") | |
| logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") | |
| tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
| model = FlaxBertModel.from_pretrained("bert-base-uncased") | |
| def _infer_fn(**inputs: np.ndarray): | |
| (sequence_batch,) = inputs.values() | |
| # need to convert dtype=object to bytes first | |
| # end decode unicode bytes | |
| sequence_batch = np.char.decode(sequence_batch.astype("bytes"), "utf-8") | |
| last_hidden_states = [] | |
| for sequence_item in sequence_batch: | |
| tokenized_sequence = tokenizer(sequence_item.item(), return_tensors="jax") | |
| results = model(**tokenized_sequence) | |
| last_hidden_states.append(results.last_hidden_state) | |
| last_hidden_states = np.array(last_hidden_states, dtype=np.float32) | |
| return [last_hidden_states] | |
| with Triton() as triton: | |
| logger.info("Loading BERT model.") | |
| triton.bind( | |
| model_name="BERT", | |
| infer_func=_infer_fn, | |
| inputs=[ | |
| Tensor(name="sequence", dtype=np.bytes_, shape=(1,)), | |
| ], | |
| outputs=[ | |
| Tensor( | |
| name="last_hidden_state", | |
| dtype=np.float32, | |
| shape=(-1, -1, -1), | |
| ), | |
| ], | |
| config=ModelConfig(max_batch_size=16), | |
| strict=True, | |
| ) | |
| logger.info("Serving inference") | |
| triton.serve() | |