Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import numpy as np | |
| from pytriton.model_config.common import DeviceKind, DynamicBatcher, QueuePolicy, TimeoutAction | |
| from pytriton.model_config.triton_model_config import ResponseCache, TensorSpec, TritonModelConfig | |
| full_model_config = TritonModelConfig( | |
| model_name="simple", | |
| batching=True, | |
| max_batch_size=16, | |
| batcher=DynamicBatcher( | |
| preferred_batch_size=[16, 32], | |
| max_queue_delay_microseconds=100, | |
| preserve_ordering=True, | |
| priority_levels=3, | |
| default_priority_level=1, | |
| default_queue_policy=QueuePolicy( | |
| allow_timeout_override=True, | |
| timeout_action=TimeoutAction.DELAY, | |
| default_timeout_microseconds=100, | |
| max_queue_size=2, | |
| ), | |
| priority_queue_policy={ | |
| 2: QueuePolicy( | |
| allow_timeout_override=True, | |
| timeout_action=TimeoutAction.DELAY, | |
| default_timeout_microseconds=100, | |
| max_queue_size=3, | |
| ) | |
| }, | |
| ), | |
| instance_group={DeviceKind.KIND_CPU: 1, DeviceKind.KIND_GPU: 2}, | |
| decoupled=True, | |
| backend_parameters={ | |
| "parameter1": "value1", | |
| "parameter2": "value2", | |
| }, | |
| inputs=[ | |
| TensorSpec(name="INPUT_1", dtype=np.float32, shape=(-1,)), | |
| TensorSpec(name="INPUT_2", dtype=np.bytes_, shape=(-1,)), | |
| ], | |
| outputs=[ | |
| TensorSpec(name="OUTPUT_1", dtype=np.int32, shape=(1000,)), | |
| ], | |
| response_cache=ResponseCache(enable=True), | |
| ) | |