Spaces:
Sleeping
Sleeping
| """ | |
| TODO: 繁体、简体、语种、 | |
| """ | |
| import os | |
| import json | |
| from collections import Counter | |
| from vocab import load_tokener | |
| from utils.log_util import logger | |
| from utils.text_util import is_all_digit, has_digit, get_digit_count, get_space_count | |
| from utils.lang_util import detect_language | |
| from utils.lang_util_2 import is_zh_char, is_all_zh, get_zh_count | |
| CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
| zh_tokens = [line.strip() for line in open(os.path.join(CURRENT_DIR, "vocab.jd.txt.v2"), "r", encoding="utf-8") if | |
| is_zh_char(line.strip())] | |
| def digit_(): | |
| """ | |
| qwen segments numbers by single digits. | |
| """ | |
| pass | |
| def to_unicode(text): | |
| return ''.join(r'\u{:04X}'.format(ord(chr)) for chr in text) | |
| def zh_iterator(): | |
| for idx in range(ord(u'\u4e00'), ord(u'\u9fa5')): | |
| yield (chr(idx)) | |
| def get_coding_length(tokenizer, vocab, filter=None): | |
| """ | |
| 计算编码长度。(有些中文汉字被解码成多个token) | |
| """ | |
| all_length = [] | |
| for word in vocab: | |
| if len(word) > 1: | |
| continue | |
| if filter is not None and filter(word): | |
| continue | |
| try: | |
| tokens = tokenizer.encode(word) | |
| except Exception as e: | |
| print(e) | |
| all_length.append(len(tokens)) | |
| # if len(tokens.ids) > 1: | |
| # if len(tokens) > 3: | |
| # print(word, tokens) | |
| dist_length = Counter(all_length) | |
| mean_length = round(sum(all_length) / len(all_length), 2) | |
| return dist_length, mean_length | |
| def remove_special_char(): | |
| """ | |
| :return: | |
| """ | |
| # bert词典有 ##开头的 | |
| # byteBPE词典有带空格的 | |
| # decode_str = decode_str.strip().replace("#", "") # TODO, 按类型 | |
| pass | |
| cache = {} | |
| def _mean(datas): | |
| return sum(datas) / len(datas) | |
| def iter_vocab(tokenizer_name, from_cache=True, cache_dir="stats/iter_vocab"): | |
| """ | |
| 由于速度较快,建议不采用文件缓存。 | |
| :param tokenizer: | |
| :param from_cache: | |
| :return: | |
| """ | |
| cache_dir = os.path.join(CURRENT_DIR, f"../{cache_dir}") | |
| os.makedirs(cache_dir, exist_ok=True) | |
| tokenizer = load_tokener(tokenizer_name) | |
| # load from cache | |
| if from_cache and tokenizer_name in cache: | |
| logger.info(f"load {tokenizer_name} from cache") | |
| return cache[tokenizer_name] | |
| has_zh_tokens = [] | |
| all_zh_tokens = [] | |
| has_digit_tokens = [] | |
| all_digit_tokens = [] | |
| has_space_tokens = [] | |
| all_space_tokens = [] | |
| # zh_tags = ["all_zh", "has_zh"] | |
| # digit_tags = ["all_digit", "has_digit"] | |
| # zh_token_count = {"total": 0, "包含1个中文单字": 0, "中文多字": 0} | |
| # symbol_count = 0 | |
| all_single_zh_tokens = set() | |
| zh_symbol_count = 0 | |
| buffer = [] | |
| for token_id in range(tokenizer.vocab_size): | |
| decode_str = tokenizer.decode([token_id], skip_special_tokens=False) | |
| token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0] | |
| # tokenizer.convert_tokens_to_string(tokens) | |
| tags = [] | |
| if token is None: # 有些词典有空的id(不连续) | |
| continue | |
| if isinstance(token, bytes): | |
| token = token.decode("utf-8", errors="ignore") | |
| digit_count = get_digit_count(decode_str) | |
| language_tags = detect_language(decode_str) | |
| if "Chinese" in language_tags: | |
| has_zh_tokens.append(decode_str) | |
| if is_all_zh(decode_str): | |
| tags.append("all_zh") | |
| all_zh_tokens.append(decode_str) | |
| if is_all_digit(decode_str): | |
| tags.append("all_digit") | |
| all_digit_tokens.append(decode_str) | |
| if has_digit(decode_str): | |
| tags.append("has_digit") | |
| has_digit_tokens.append(decode_str) | |
| space_count = get_space_count(decode_str) | |
| if space_count > 0: | |
| has_space_tokens.append(decode_str) | |
| if space_count == len(decode_str): | |
| all_space_tokens.append(decode_str) | |
| zh_count = get_zh_count(decode_str) | |
| buffer.append(json.dumps( | |
| {"id": token_id, | |
| "token": token, | |
| "token_decode": decode_str, | |
| "token_dumps": json.dumps(token), | |
| "token_unicode": to_unicode(token), | |
| "token_len": len(decode_str), | |
| "zh_count": zh_count, # 包含汉字的数目 | |
| # "zh-smpli": zh_hans_count, # 简体中文 zh-Hans | |
| "tags": tags, | |
| "zh_symbol_count": zh_symbol_count, | |
| }, | |
| ensure_ascii=False) + "\n") | |
| # if zh_count >= 1: | |
| # zh_token_count["total"] += 1 | |
| # if zh_count > 1: | |
| # zh_token_count["中文多字"] += 1 | |
| # else: | |
| # zh_token_count["中文单字"] += 1 | |
| # all_single_zh_tokens.add(decode_str.strip().replace("#", "")) | |
| # | |
| # zh_token_count["中文单字-去重后"] = len(all_single_zh_tokens) | |
| dist_length, mean_length = get_coding_length(tokenizer, zh_tokens, filter=lambda k: not is_zh_char(k)) | |
| # TODO: 繁体字,简体字 | |
| result = { | |
| "name": tokenizer_name, | |
| "impl": str(tokenizer.__class__), | |
| "vocab_size": len(tokenizer), | |
| "中文token数": len(has_zh_tokens), | |
| "中文token的平均长度": None, | |
| "纯中文token的平均长度": None, | |
| "中文标点数": zh_symbol_count, | |
| "中文汉字编码长度均值": mean_length, | |
| "中文汉字编码长度分布": json.dumps(dist_length), | |
| "纯数字token数": len(all_digit_tokens), | |
| "包含数字token数": len(has_digit_tokens), | |
| "纯数字token的平均长度": round(_mean([len(item) for item in all_digit_tokens]), 2), | |
| "纯中文token数": None, # all_zh | |
| "纯space的token数": len(all_space_tokens), | |
| "纯space的token数": len(all_space_tokens), # "#" | |
| "纯space的token的平均长度": None, # avg_len( tokens_contains_space) | |
| "contains_korea": None, | |
| } | |
| out_path = os.path.join(cache_dir, f"{tokenizer_name}.vocab.jsonl") | |
| logger.info(f"saving vocab to {out_path}") | |
| with open(out_path, "w", encoding="utf-8") as f_out: | |
| f_out.write(json.dumps(result, ensure_ascii=False) + "\n") | |
| for line in buffer: | |
| f_out.write(line) | |
| cache[tokenizer_name] = result | |
| return result | |
| if __name__ == "__main__": | |
| # test_coding_length(jd_vocab_tokens, filter=lambda k: not is_chinese(k)) | |
| # test_coding_length(zh_punc) | |
| # test_coding_length(zh_iterator()) | |
| # from vocab.chatglm2_6b import tokenizer; name = "chatglm2_6b" | |
| # from vocab.chatglm_6b import tokenizer; name="chatglm_6b" | |
| # from vocab.baichuan2 import tokenizer; name="baichuan2" | |
| name="gpt_4" | |
| # name="gpt2" | |
| # name="qwen1_5_14b_chat" | |
| # name="gpt_nexo_20b" | |
| # name="fastchat_t5_3b" | |
| print(iter_vocab(name)) | |