Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +46 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
import spaces
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
+
|
| 7 |
+
# Load model and tokenizer if a GPU is available
|
| 8 |
+
if torch.cuda.is_available():
|
| 9 |
+
model_id = "allenai/OLMo-7B-Instruct"
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 12 |
+
else:
|
| 13 |
+
raise EnvironmentError("CUDA device not available. Please run on a GPU-enabled environment.")
|
| 14 |
+
|
| 15 |
+
# Basic function to generate response based on passage and question
|
| 16 |
+
@spaces.GPU
|
| 17 |
+
def generate_response(passage: str, question: str) -> str:
|
| 18 |
+
# Prepare the input text by combining the passage and question
|
| 19 |
+
user_message = f"Passage: {passage}\nQuestion: {question}"
|
| 20 |
+
inputs = tokenizer(user_message, return_tensors="pt").to(model.device)
|
| 21 |
+
|
| 22 |
+
# Generate text, focusing only on the new tokens added by the model
|
| 23 |
+
outputs = model.generate(inputs.input_ids, max_new_tokens=150)
|
| 24 |
+
|
| 25 |
+
# Decode only the generated part, skipping the prompt input
|
| 26 |
+
generated_tokens = outputs[0][inputs.input_ids.shape[-1]:] # Ignore input tokens in the output
|
| 27 |
+
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 28 |
+
|
| 29 |
+
return response
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# Gradio Interface
|
| 33 |
+
with gr.Blocks() as demo:
|
| 34 |
+
gr.Markdown("# Passage and Question Response Generator")
|
| 35 |
+
|
| 36 |
+
passage_input = gr.Textbox(label="Passage", placeholder="Enter the passage here", lines=5)
|
| 37 |
+
question_input = gr.Textbox(label="Question", placeholder="Enter the question here", lines=2)
|
| 38 |
+
|
| 39 |
+
output_box = gr.Textbox(label="Response", placeholder="Model's response will appear here")
|
| 40 |
+
|
| 41 |
+
submit_button = gr.Button("Generate Response")
|
| 42 |
+
submit_button.click(fn=generate_response, inputs=[passage_input, question_input], outputs=output_box)
|
| 43 |
+
|
| 44 |
+
# Run the app
|
| 45 |
+
if __name__ == "__main__":
|
| 46 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ai2-olmo
|
| 2 |
+
accelerate
|