Spaces:
Sleeping
Sleeping
File size: 14,985 Bytes
ddd63a2 838e8f6 986650d ddd63a2 838e8f6 ddd63a2 e219479 ddd63a2 986650d 838e8f6 e219479 838e8f6 ddd63a2 986650d 838e8f6 ddd63a2 838e8f6 ddd63a2 7b692ae ddd63a2 838e8f6 7b692ae ddd63a2 838e8f6 ddd63a2 838e8f6 ddd63a2 838e8f6 ddd63a2 838e8f6 ddd63a2 838e8f6 7b692ae 838e8f6 ddd63a2 838e8f6 7b692ae 838e8f6 ddd63a2 838e8f6 97b66ab 7b692ae 97b66ab 7b692ae 97b66ab 7b692ae 97b66ab 7b692ae 97b66ab 7b692ae 97b66ab 7b692ae 97b66ab 7b692ae 97b66ab 7b692ae 97b66ab 7b692ae 97b66ab 7b692ae 97b66ab 838e8f6 ddd63a2 838e8f6 845f960 838e8f6 845f960 838e8f6 e219479 838e8f6 845f960 838e8f6 845f960 838e8f6 ddd63a2 7b692ae 838e8f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
import gradio as gr
import numpy as np
import os
from PIL import Image
import cv2
import spaces
# Import our custom modules
from core import TextResizer
from prompt_handler import PromptHandler
from utils import (
load_image,
save_image,
validate_scale_factor,
parse_percentage_to_scale_factor,
create_output_filename
)
# Initialize the text resizer with GPU support (English only)
text_resizer = TextResizer(languages=['en'], gpu=True)
def find_target_text_in_prompt(user_prompt, ocr_results):
"""
从用户prompt中智能查找目标文字
Args:
user_prompt: 用户输入的指令
ocr_results: OCR识别结果列表
Returns:
找到的目标文字,如果没找到则返回None
"""
import re
# 提取所有OCR识别的文字
ocr_texts = [text.strip() for _, text, _ in ocr_results]
# 1. 首先查找被引号包围的文字 (单引号或双引号)
quoted_matches = re.findall(r'["\']([^"\']+)["\']', user_prompt)
for quoted_text in quoted_matches:
# 在OCR结果中查找完全匹配或部分匹配
for ocr_text in ocr_texts:
if quoted_text.lower() == ocr_text.lower():
return ocr_text
if quoted_text.lower() in ocr_text.lower() or ocr_text.lower() in quoted_text.lower():
return ocr_text
# 2. 如果没有引号,尝试查找prompt中包含的OCR文字
user_prompt_lower = user_prompt.lower()
for ocr_text in ocr_texts:
if ocr_text.lower() in user_prompt_lower:
return ocr_text
# 3. 尝试查找部分匹配的单词
prompt_words = re.findall(r'\b\w+\b', user_prompt_lower)
for word in prompt_words:
if len(word) > 2: # 忽略太短的单词
for ocr_text in ocr_texts:
if word in ocr_text.lower():
return ocr_text
return None
@spaces.GPU
def process_image(input_image, user_prompt, use_ai_parsing=True, api_key=None):
"""
Process image with text resizing based on user prompt
"""
try:
if input_image is None:
return None, "❌ 错误: 请上传一张图片"
# Convert PIL to RGB numpy array
image_rgb = np.array(input_image.convert('RGB'))
# Perform OCR
ocr_results = text_resizer.read_text(image_rgb)
if not ocr_results:
return None, "❌ 错误: 未在图像中识别到任何文字"
# Parse user prompt
try:
if use_ai_parsing and api_key:
# Use OpenAI API parsing
prompt_handler = PromptHandler(api_key=api_key)
parsed_result = prompt_handler.parse_user_request(ocr_results, user_prompt)
if not prompt_handler.validate_parsed_result(parsed_result, ocr_results):
raise Exception("AI解析结果验证失败")
target_text = parsed_result["target_text"]
scale_factor = validate_scale_factor(parsed_result["scale_factor"])
status_msg = f"✅ AI解析成功: 目标文字='{target_text}', 缩放因子={scale_factor}"
else:
# Use fallback parsing
scale_factor = parse_percentage_to_scale_factor(user_prompt)
if scale_factor == 1.0:
return None, "❌ 错误: 无法从用户指令中解析出缩放信息"
# Try to find target text from user prompt
target_text = find_target_text_in_prompt(user_prompt, ocr_results)
if not target_text:
# If no specific text found in prompt, ask user to specify
available_texts = [text.strip() for _, text, _ in ocr_results]
return None, f"❌ 错误: 无法确定要调整的文字。请在指令中明确指定文字,如 'enlarge \"具体文字\" by 50%'\n\n📝 可用的文字: {available_texts}"
status_msg = f"✅ 备用解析: 目标文字='{target_text}', 缩放因子={scale_factor}"
except Exception as e:
return None, f"❌ 错误: 指令解析失败: {str(e)}"
# Process the image
try:
result_image = text_resizer.resize_text(image_rgb, target_text, scale_factor)
# Convert back to PIL Image
result_pil = Image.fromarray(result_image)
return result_pil, status_msg
except ValueError as e:
# Show available texts
available_texts = [text.strip() for _, text, _ in ocr_results]
error_msg = f"❌ 错误: {str(e)}\n\n📝 可用的文字: {available_texts}"
return None, error_msg
except Exception as e:
return None, f"❌ 处理过程中出现错误: {str(e)}"
@spaces.GPU
def get_ocr_info(input_image):
"""
Get OCR information from the image
"""
if input_image is None:
return "请先上传图片"
try:
# Convert PIL to RGB numpy array
image_rgb = np.array(input_image.convert('RGB'))
# Perform OCR
ocr_results = text_resizer.read_text(image_rgb)
if not ocr_results:
return "未识别到任何文字"
# Format results
info = f"📝 识别到 {len(ocr_results)} 个文字区域:\n"
info += "=" * 50 + "\n"
for i, (bbox, text, conf) in enumerate(ocr_results):
info += f"{i+1:2d}. '{text}' (置信度: {conf:.2f})\n"
info += "=" * 50
return info
except Exception as e:
return f"❌ OCR识别失败: {str(e)}"
# Define CSS for styling
css = """
/* Global text color fixes - high priority */
body, .gradio-container, .gradio-container * {
color: #333 !important;
}
/* Force all text elements to have good contrast */
p, div, span, label, input, textarea, button, h1, h2, h3, h4, h5, h6 {
color: #333 !important;
}
#col-container {
margin: 0 auto;
max-width: 1000px;
color: #333 !important;
}
#input-section {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px;
border-radius: 15px;
margin-bottom: 20px;
}
#output-section {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
padding: 20px;
border-radius: 15px;
}
.gradio-container {
background: linear-gradient(135deg, #ffecd2 0%, #fcb69f 100%);
}
#title {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 20px;
}
#description {
text-align: center;
color: #222 !important;
font-size: 1.1em;
margin-bottom: 30px;
line-height: 1.6;
}
.process-button {
background: linear-gradient(135deg, #4CAF50 0%, #45a049 100%);
color: white !important;
border: none;
padding: 15px 30px;
font-size: 16px;
border-radius: 10px;
cursor: pointer;
transition: all 0.3s ease;
}
.process-button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
/* White text for dark gradient sections */
#input-section, #input-section * {
color: white !important;
}
#output-section, #output-section * {
color: white !important;
}
/* Override Gradio's default text colors */
.gradio-container .gr-markdown p,
.gradio-container .gr-markdown div,
.gradio-container .gr-markdown span,
.gradio-container .gr-markdown li {
color: #333 !important;
}
#input-section .gr-markdown p,
#input-section .gr-markdown div,
#input-section .gr-markdown span,
#input-section .gr-markdown li {
color: white !important;
}
#output-section .gr-markdown p,
#output-section .gr-markdown div,
#output-section .gr-markdown span,
#output-section .gr-markdown li {
color: white !important;
}
/* Force all labels and form elements to have proper contrast */
label, .gr-form label, .gr-textbox label, .gr-button, .gr-checkbox label {
color: #333 !important;
font-weight: 500;
}
#input-section label,
#input-section .gr-form label,
#input-section .gr-textbox label,
#input-section .gr-button,
#input-section .gr-checkbox label {
color: white !important;
}
#output-section label,
#output-section .gr-form label,
#output-section .gr-textbox label,
#output-section .gr-button,
#output-section .gr-checkbox label {
color: white !important;
}
/* Additional fallback for any missed text elements */
.gradio-container [class*="text"],
.gradio-container [class*="label"],
.gradio-container [class*="markdown"] {
color: #333 !important;
}
#input-section [class*="text"],
#input-section [class*="label"],
#input-section [class*="markdown"] {
color: white !important;
}
#output-section [class*="text"],
#output-section [class*="label"],
#output-section [class*="markdown"] {
color: white !important;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css, title="智能文字缩放工具") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# 🎨 智能文字缩放工具", elem_id="title")
gr.Markdown(
"""
🚀 **使用AI技术智能调整图片中的文字大小**
📝 支持自然语言指令,如:
- enlarge 'Hello' by 50% - 将'Hello'放大50%
- make the title bigger - 让标题变大
- shrink the footer text - 缩小页脚文字
🎯 **使用方法**:
1. 上传包含文字的图片
2. 输入文字调整指令
3. 点击处理按钮
4. 查看处理结果
""",
elem_id="description"
)
with gr.Row():
with gr.Column(scale=1):
with gr.Group(elem_id="input-section"):
gr.Markdown("### 📤 输入设置")
# Image input
input_image = gr.Image(
label="上传图片",
type="pil",
height=300,
sources=["upload", "clipboard", "webcam"]
)
# Prompt input
user_prompt = gr.Textbox(
label="文字调整指令",
placeholder="例如: enlarge 'Hello' by 50%",
lines=2,
info="支持自然语言描述,如 make XX bigger 或 enlarge XX by 50%"
)
# OCR info button
ocr_button = gr.Button(
"🔍 查看图片中的文字",
variant="secondary",
size="sm"
)
# Advanced settings
with gr.Accordion("⚙️ 高级设置", open=False):
use_ai_parsing = gr.Checkbox(
label="🤖 使用AI解析 (推荐,需要OpenAI API密钥)",
value=True,
info="使用GPT-4.1-nano模型智能理解自然语言指令"
)
api_key = gr.Textbox(
label="🔑 OpenAI API密钥 (可选)",
placeholder="sk-...",
type="password",
info="仅在使用AI解析时需要"
)
# Process button
process_button = gr.Button(
"🎯 开始处理",
variant="primary",
size="lg",
elem_classes="process-button"
)
with gr.Column(scale=1):
with gr.Group(elem_id="output-section"):
gr.Markdown("### 📤 处理结果")
# Output image
output_image = gr.Image(
label="处理后的图片",
height=300,
show_download_button=True
)
# Status message
status_message = gr.Textbox(
label="💬 状态信息",
lines=4,
max_lines=8,
interactive=False
)
# OCR info display
ocr_info = gr.Textbox(
label="📝 OCR识别结果",
lines=6,
max_lines=10,
interactive=False
)
# Examples section
gr.Markdown("### 📚 示例用法")
gr.Markdown(
"""
**示例指令格式:**
🔍 **指定文字 + 具体比例:**
- enlarge 'Hello' by 50% - 将'Hello'放大50%
- shrink 'Title' by 30% - 将'Title'缩小30%
🎯 **自然语言描述:**
- make the title bigger - 让标题变大
- make the text smaller - 让文字变小
- enlarge the heading - 放大标题
💡 **使用提示:**
1. 上传包含文字的图片
2. 先点击"查看图片中的文字"了解可用文字
3. 输入调整指令
4. 点击"开始处理"
"""
)
# Event handlers
process_button.click(
fn=process_image,
inputs=[input_image, user_prompt, use_ai_parsing, api_key],
outputs=[output_image, status_message]
)
ocr_button.click(
fn=get_ocr_info,
inputs=[input_image],
outputs=[ocr_info]
)
# Auto-run OCR when image is uploaded
input_image.change(
fn=get_ocr_info,
inputs=[input_image],
outputs=[ocr_info]
)
# Footer
gr.Markdown(
"""
---
🎨 **智能文字缩放工具** | 基于OCR和AI技术的智能图像文字处理
📧 如有问题或建议,请联系开发者
"""
)
if __name__ == "__main__":
# Fixed text contrast issues - force redeploy
demo.launch(share=True, server_name="0.0.0.0", server_port=7860) |