Spaces:
Running
Running
File size: 19,909 Bytes
1b21566 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
from datasets import load_dataset
from typing import List, Optional, Dict, Any
from datetime import datetime
from models import ArticleResponse, ArticleDetail, Argument, FiltersResponse
from collections import Counter
from functools import lru_cache
from whoosh import index
from whoosh.fields import Schema, TEXT, ID
from whoosh.qparser import QueryParser
from whoosh.filedb.filestore import RamStorage
from dateutil import parser as date_parser
import numpy as np
from sentence_transformers import SentenceTransformer
# Constants
SEARCH_CACHE_MAX_SIZE = 1000
LABOR_SCORE_WEIGHT = 0.1 # Weight for labor score in relevance calculation
DATE_RANGE_START = "2022-01-01"
DATE_RANGE_END = "2025-12-31"
class DataLoader:
"""
Handles loading, indexing, and searching of AI labor economy articles.
Uses Whoosh for full-text search and maintains in-memory data structures
for fast filtering and pagination.
"""
def __init__(self):
self.dataset = None
self.articles = []
self.articles_by_id = {} # ID -> article mapping
self.filter_options = None
# Initialize Whoosh search index for full-text search
self.search_schema = Schema(
id=ID(stored=True),
title=TEXT(stored=False),
summary=TEXT(stored=False),
content=TEXT(stored=False) # Combined title + summary for search
)
# Create in-memory index using RamStorage
storage = RamStorage()
self.search_index = storage.create_index(self.search_schema)
self.query_parser = QueryParser("content", self.search_schema)
# Dense retrieval components (lazy-loaded for efficiency)
self.embeddings = None # Article embeddings from dataset
self.embedding_model = None # SentenceTransformer model
self.model_path = "ibm-granite/granite-embedding-english-r2"
# Note: Using lru_cache for search caching instead of manual cache management
async def load_dataset(self):
"""Load and process the HuggingFace dataset"""
# Load dataset
self.dataset = load_dataset("yjernite/ai-economy-labor-articles-annotated-embed", split="train")
# Convert to list of dicts for easier processing
self.articles = []
# Prepare Whoosh index writer
writer = self.search_index.writer()
for i, row in enumerate(self.dataset):
# Parse date using dateutil (more flexible than pandas)
date = date_parser.parse(row['date']) if isinstance(row['date'], str) else row['date']
# Parse arguments
arguments = []
if row.get('arguments'):
for arg in row['arguments']:
arguments.append(Argument(
argument_quote=arg.get('argument_quote', []),
argument_summary=arg.get('argument_summary', ''),
argument_source=arg.get('argument_source', ''),
argument_type=arg.get('argument_type', ''),
))
article = {
'id': i,
'title': row.get('title', ''),
'source': row.get('source', ''),
'url': row.get('url', ''),
'date': date,
'summary': row.get('summary', ''),
'ai_labor_relevance': row.get('ai_labor_relevance', 0),
'document_type': row.get('document_type', ''),
'author_type': row.get('author_type', ''),
'document_topics': row.get('document_topics', []),
'text': row.get('text', ''),
'arguments': arguments,
}
self.articles.append(article)
self.articles_by_id[i] = article
# Add to search index
search_content = f"{article['title']} {article['summary']}"
writer.add_document(
id=str(i),
title=article['title'],
summary=article['summary'],
content=search_content
)
# Commit search index
writer.commit()
print(f"DEBUG: Search index populated with {len(self.articles)} articles")
# Load pre-computed embeddings for dense retrieval
print("DEBUG: Loading pre-computed embeddings...")
raw_embeddings = np.array(self.dataset['embeddings-granite'])
# Normalize embeddings for cosine similarity
self.embeddings = raw_embeddings / np.linalg.norm(raw_embeddings, axis=1, keepdims=True)
print(f"DEBUG: Loaded {len(self.embeddings)} article embeddings")
# Build filter options
self._build_filter_options()
def _build_filter_options(self):
"""Build available filter options from the dataset"""
document_types = sorted(set(article['document_type'] for article in self.articles if article['document_type']))
author_types = sorted(set(article['author_type'] for article in self.articles if article['author_type']))
# Flatten all topics
all_topics = []
for article in self.articles:
if article['document_topics']:
all_topics.extend(article['document_topics'])
topics = sorted(set(all_topics))
# Date range - fixed for research period
min_date = DATE_RANGE_START
max_date = DATE_RANGE_END
# Relevance range
relevances = [article['ai_labor_relevance'] for article in self.articles if article['ai_labor_relevance'] is not None]
min_relevance = min(relevances) if relevances else 0
max_relevance = max(relevances) if relevances else 10
self.filter_options = FiltersResponse(
document_types=document_types,
author_types=author_types,
topics=topics,
date_range={"min_date": min_date, "max_date": max_date},
relevance_range={"min_relevance": min_relevance, "max_relevance": max_relevance}
)
def get_filter_options(self) -> FiltersResponse:
"""Get all available filter options"""
return self.filter_options
def _filter_articles(
self,
document_types: Optional[List[str]] = None,
author_types: Optional[List[str]] = None,
min_relevance: Optional[float] = None,
max_relevance: Optional[float] = None,
start_date: Optional[str] = None,
end_date: Optional[str] = None,
topics: Optional[List[str]] = None,
search_query: Optional[str] = None,
search_type: Optional[str] = None,
) -> List[Dict[str, Any]]:
"""Filter articles based on criteria"""
filtered = self.articles
if document_types:
filtered = [a for a in filtered if a['document_type'] in document_types]
if author_types:
filtered = [a for a in filtered if a['author_type'] in author_types]
if min_relevance is not None:
filtered = [a for a in filtered if a['ai_labor_relevance'] >= min_relevance]
if max_relevance is not None:
filtered = [a for a in filtered if a['ai_labor_relevance'] <= max_relevance]
if start_date:
start_dt = date_parser.parse(start_date)
filtered = [a for a in filtered if a['date'] >= start_dt]
if end_date:
end_dt = date_parser.parse(end_date)
filtered = [a for a in filtered if a['date'] <= end_dt]
if topics:
filtered = [a for a in filtered if any(topic in a['document_topics'] for topic in topics)]
if search_query:
print(f"DEBUG: Applying search filter for query: '{search_query}' with type: '{search_type}'")
if search_type == 'dense':
# For dense search, get similarity scores for all articles
dense_scores = self._dense_search_all_articles(search_query)
dense_score_dict = {idx: score for idx, score in dense_scores}
# Attach dense scores to filtered articles and filter by similarity threshold
filtered_with_scores = []
for article in filtered:
article_id = article['id']
if article_id in dense_score_dict:
# Create a copy to avoid modifying the original
article_copy = article.copy()
article_copy['dense_score'] = dense_score_dict[article_id]
# Only include articles with meaningful similarity (> 0.8)
if dense_score_dict[article_id] > 0.8:
filtered_with_scores.append(article_copy)
filtered = filtered_with_scores
print(f"DEBUG: After dense search filtering: {len(filtered)} articles remaining")
else:
# Existing exact search logic - inline the matching check
search_results = self._search_articles(search_query, search_type)
filtered = [a for a in filtered if a.get('id') in search_results]
print(f"DEBUG: After exact search filtering: {len(filtered)} articles remaining")
return filtered
def _search_articles(self, search_query: str, search_type: Optional[str] = None) -> Dict[int, float]:
"""Search articles using Whoosh and return article_id -> score mapping
Note: Dense search is handled separately in _filter_articles method.
This method only handles exact/Whoosh search.
"""
if not search_query:
return {}
# Use cached Whoosh search (lru_cache handles caching automatically)
return self._cached_whoosh_search(search_query)
@lru_cache(maxsize=SEARCH_CACHE_MAX_SIZE)
def _cached_whoosh_search(self, search_query: str) -> Dict[int, float]:
"""Cached version of Whoosh search using lru_cache"""
return self._whoosh_search(search_query)
def _whoosh_search(self, search_query: str) -> Dict[int, float]:
"""Perform search using Whoosh index"""
try:
with self.search_index.searcher() as searcher:
# Parse query - Whoosh handles tokenization automatically
query = self.query_parser.parse(search_query)
results = searcher.search(query, limit=None) # Get all results
print(f"DEBUG: Search query '{search_query}' found {len(results)} results")
# Return mapping of article_id -> normalized score
article_scores = {}
max_score = max((r.score for r in results), default=1.0)
for result in results:
article_id = int(result['id'])
# Normalize score to 0-1 range
normalized_score = result.score / max_score if max_score > 0 else 0.0
article_scores[article_id] = normalized_score
print(f"DEBUG: Returning {len(article_scores)} scored articles")
return article_scores
except Exception as e:
print(f"Search error: {e}")
return {}
def _initialize_embedding_model(self):
"""Lazy initialization of embedding model (CPU-only)"""
if self.embedding_model is None:
print("DEBUG: Initializing embedding model (CPU-only)...")
# Force CPU usage and disable problematic features
import os
os.environ['CUDA_VISIBLE_DEVICES'] = ''
# Initialize model with CPU device and specific config
self.embedding_model = SentenceTransformer(
self.model_path,
device='cpu',
model_kwargs={
'dtype': 'float32', # Fixed deprecation warning
'attn_implementation': 'eager' # Use eager attention instead of flash attention
}
)
print("DEBUG: Embedding model initialized")
@lru_cache(maxsize=100) # Cache encoded queries (smaller cache for this)
def _encode_query_cached(self, query: str) -> tuple:
"""Cache-friendly version of query encoding (returns tuple for hashing)"""
embedding = self._encode_query_internal(query)
return tuple(embedding.tolist()) # Convert to tuple for caching
def _encode_query(self, query: str) -> np.ndarray:
"""Encode a query string into an embedding vector"""
cached_result = self._encode_query_cached(query)
return np.array(cached_result) # Convert back to numpy array
def _encode_query_internal(self, query: str) -> np.ndarray:
"""Internal method that does the actual encoding"""
self._initialize_embedding_model()
query_embedding = self.embedding_model.encode([query])
# Normalize for cosine similarity
return query_embedding[0] / np.linalg.norm(query_embedding[0])
def _dense_search_all_articles(self, query: str, k: int = None) -> List[tuple]:
"""
Perform dense retrieval across ALL articles and return (index, score) pairs.
This computes all similarities upfront for maximum flexibility.
"""
if self.embeddings is None:
print("ERROR: Embeddings not loaded")
return []
print(f"DEBUG: Performing dense search for query: '{query}'")
# Encode query
query_embed = self._encode_query(query)
# Compute similarities with ALL articles
similarities = np.dot(self.embeddings, query_embed)
# Get all articles with their similarity scores
article_scores = [(i, float(similarities[i])) for i in range(len(similarities))]
# Sort by similarity (highest first)
article_scores.sort(key=lambda x: x[1], reverse=True)
# Apply k limit if specified
if k is not None:
article_scores = article_scores[:k]
print(f"DEBUG: Dense search found {len(article_scores)} scored articles")
return article_scores
def _calculate_query_score(self, article: Dict[str, Any], search_query: str, search_type: Optional[str] = None) -> float:
"""Calculate query relevance score based on search type"""
if not search_query:
return 0.0
if search_type == 'dense':
# For dense search, return the pre-computed similarity score
return article.get('dense_score', 0.0)
else:
# Existing exact search logic using Whoosh
search_results = self._search_articles(search_query, search_type)
article_id = article.get('id')
# Return Whoosh score or 0.0 if not found
return search_results.get(article_id, 0.0)
def _sort_by_relevance(self, articles: List[Dict[str, Any]], search_query: str, search_type: str = 'exact') -> List[Dict[str, Any]]:
"""Sort articles by relevance score (query score + labor score)"""
def relevance_key(article):
query_score = self._calculate_query_score(article, search_query, search_type)
labor_score = article.get('ai_labor_relevance', 0) / 10.0 # Normalize to 0-1
# Prioritize query score but include labor score as tiebreaker
return query_score + (labor_score * LABOR_SCORE_WEIGHT)
return sorted(articles, key=relevance_key, reverse=True)
def get_articles(
self,
page: int = 1,
limit: int = 20,
**filters
) -> List[ArticleResponse]:
"""Get filtered and paginated articles"""
# Extract sort_by, search_query, and search_type for special handling
sort_by = filters.pop('sort_by', 'date')
search_query = filters.get('search_query')
search_type = filters.get('search_type', 'exact')
filtered_articles = self._filter_articles(**filters)
# Apply sorting
if sort_by == 'score' and search_query:
# Sort by query relevance score descending, then by labor score
filtered_articles = self._sort_by_relevance(filtered_articles, search_query, search_type)
else:
# Sort by date (oldest first) - default
filtered_articles.sort(key=lambda x: x['date'], reverse=False)
# Paginate
start_idx = (page - 1) * limit
end_idx = start_idx + limit
page_articles = filtered_articles[start_idx:end_idx]
# Convert to response models - use the original ID from the sorted/filtered results
return [
ArticleResponse(
id=article['id'],
title=article['title'],
source=article['source'],
url=article['url'],
date=article['date'],
summary=article['summary'],
ai_labor_relevance=article['ai_labor_relevance'],
query_score=self._calculate_query_score(article, search_query or '', search_type),
document_type=article['document_type'],
author_type=article['author_type'],
document_topics=article['document_topics'],
)
for article in page_articles
]
def get_articles_count(self, **filters) -> int:
"""Get count of articles matching filters"""
filtered_articles = self._filter_articles(**filters)
return len(filtered_articles)
def get_filter_counts(self, filter_type: str, **filters) -> Dict[str, int]:
"""Get counts for each option in a specific filter type, given other filters"""
# Remove the current filter type from filters to avoid circular filtering
filters_copy = filters.copy()
filters_copy.pop(filter_type, None)
# Get base filtered articles (without the current filter type)
base_filtered = self._filter_articles(**filters_copy)
# Extract values based on filter type and count with Counter
if filter_type == 'document_types':
values = [article.get('document_type') for article in base_filtered
if article.get('document_type')]
elif filter_type == 'author_types':
values = [article.get('author_type') for article in base_filtered
if article.get('author_type')]
elif filter_type == 'topics':
values = [topic for article in base_filtered
for topic in article.get('document_topics', []) if topic]
else:
return {}
return dict(Counter(values))
def get_article_detail(self, article_id: int) -> ArticleDetail:
"""Get detailed article by ID"""
if article_id not in self.articles_by_id:
raise ValueError(f"Article ID {article_id} not found")
article = self.articles_by_id[article_id]
return ArticleDetail(
id=article['id'],
title=article['title'],
source=article['source'],
url=article['url'],
date=article['date'],
summary=article['summary'],
ai_labor_relevance=article['ai_labor_relevance'],
query_score=0.0, # Detail view doesn't have search context
document_type=article['document_type'],
author_type=article['author_type'],
document_topics=article['document_topics'],
text=article['text'],
arguments=article['arguments'],
)
|