Update metrics
Browse files- backend/app/services/leaderboard.py +56 -21
- frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/defaults.js +190 -148
- frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/tooltips.js +272 -192
- frontend/src/pages/LeaderboardPage/components/Leaderboard/utils/columnUtils.js +743 -600
backend/app/services/leaderboard.py
CHANGED
|
@@ -104,32 +104,67 @@ class LeaderboardService:
|
|
| 104 |
|
| 105 |
# Create unique ID combining model name, precision, sha and chat template status
|
| 106 |
unique_id = f"{data.get('fullname', 'Unknown')}_{data.get('Precision', 'Unknown')}_{data.get('Model sha', 'Unknown')}_{str(data.get('Chat Template', False))}"
|
| 107 |
-
|
| 108 |
evaluations = {
|
| 109 |
-
"
|
| 110 |
-
"name": "
|
| 111 |
-
"value": data.get("
|
| 112 |
-
"normalized_score": data.get("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
},
|
| 114 |
-
"
|
| 115 |
-
"name": "
|
| 116 |
-
"value": data.get("
|
| 117 |
-
"normalized_score": data.get("
|
| 118 |
},
|
| 119 |
-
"
|
| 120 |
-
"name": "
|
| 121 |
-
"value": data.get("
|
| 122 |
-
"normalized_score": data.get("
|
| 123 |
},
|
| 124 |
-
"
|
| 125 |
-
"name": "
|
| 126 |
-
"value": data.get("
|
| 127 |
-
"normalized_score": data.get("
|
| 128 |
},
|
| 129 |
-
"
|
| 130 |
-
"name": "
|
| 131 |
-
"value": data.get("
|
| 132 |
-
"normalized_score": data.get("
|
| 133 |
},
|
| 134 |
}
|
| 135 |
|
|
|
|
| 104 |
|
| 105 |
# Create unique ID combining model name, precision, sha and chat template status
|
| 106 |
unique_id = f"{data.get('fullname', 'Unknown')}_{data.get('Precision', 'Unknown')}_{data.get('Model sha', 'Unknown')}_{str(data.get('Chat Template', False))}"
|
| 107 |
+
|
| 108 |
evaluations = {
|
| 109 |
+
"bc5cdr_chemical": {
|
| 110 |
+
"name": "BC5CDR-chemical",
|
| 111 |
+
"value": data.get("BC5CDR-chemical", 0),
|
| 112 |
+
"normalized_score": data.get("BC5CDR-chemical", 0),
|
| 113 |
+
},
|
| 114 |
+
"ncbi_disease": {
|
| 115 |
+
"name": "NCBI Disease",
|
| 116 |
+
"value": data.get("NCBI Disease", 0),
|
| 117 |
+
"normalized_score": data.get("NCBI Disease", 0),
|
| 118 |
+
},
|
| 119 |
+
"chemprot": {
|
| 120 |
+
"name": "ChemProt",
|
| 121 |
+
"value": data.get("ChemProt", 0),
|
| 122 |
+
"normalized_score": data.get("ChemProt", 0),
|
| 123 |
+
},
|
| 124 |
+
"ddi2013": {
|
| 125 |
+
"name": "DDI2013",
|
| 126 |
+
"value": data.get("DDI2013", 0),
|
| 127 |
+
"normalized_score": data.get("DDI2013", 0),
|
| 128 |
+
},
|
| 129 |
+
"hoc": {
|
| 130 |
+
"name": "HoC",
|
| 131 |
+
"value": data.get("HoC", 0),
|
| 132 |
+
"normalized_score": data.get("HoC", 0),
|
| 133 |
+
},
|
| 134 |
+
"litcovid": {
|
| 135 |
+
"name": "LitCovid",
|
| 136 |
+
"value": data.get("LitCovid", 0),
|
| 137 |
+
"normalized_score": data.get("LitCovid", 0),
|
| 138 |
+
},
|
| 139 |
+
"medqa": {
|
| 140 |
+
"name": "MedQA (5-Option)",
|
| 141 |
+
"value": data.get("MedQA (5-Option)", 0),
|
| 142 |
+
"normalized_score": data.get("MedQA (5-Option)", 0),
|
| 143 |
+
},
|
| 144 |
+
"pubmedqa": {
|
| 145 |
+
"name": "PubMedQA",
|
| 146 |
+
"value": data.get("PubMedQA", 0),
|
| 147 |
+
"normalized_score": data.get("PubMedQA", 0),
|
| 148 |
},
|
| 149 |
+
"pubmed": {
|
| 150 |
+
"name": "PubMed",
|
| 151 |
+
"value": data.get("PubMed", 0),
|
| 152 |
+
"normalized_score": data.get("PubMed", 0),
|
| 153 |
},
|
| 154 |
+
"ms2": {
|
| 155 |
+
"name": "MS^2",
|
| 156 |
+
"value": data.get("MS^2", 0),
|
| 157 |
+
"normalized_score": data.get("MS^2", 0),
|
| 158 |
},
|
| 159 |
+
"cochrane_pls": {
|
| 160 |
+
"name": "Cochrane PLS",
|
| 161 |
+
"value": data.get("Cochrane PLS", 0),
|
| 162 |
+
"normalized_score": data.get("Cochrane PLS", 0),
|
| 163 |
},
|
| 164 |
+
"plos": {
|
| 165 |
+
"name": "PLOS",
|
| 166 |
+
"value": data.get("PLOS", 0),
|
| 167 |
+
"normalized_score": data.get("PLOS", 0),
|
| 168 |
},
|
| 169 |
}
|
| 170 |
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/defaults.js
CHANGED
|
@@ -98,158 +98,200 @@ const COLUMN_SIZES = {
|
|
| 98 |
|
| 99 |
// Column definitions with organized structure
|
| 100 |
const COLUMNS = {
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
},
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
},
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
},
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
},
|
| 126 |
-
},
|
| 127 |
-
EVALUATION: {
|
| 128 |
-
"evaluations.multifin.normalized_score": {
|
| 129 |
-
group: "evaluation",
|
| 130 |
-
size: COLUMN_SIZES.BENCHMARK,
|
| 131 |
-
defaultVisible: true,
|
| 132 |
-
label: "MultiFin",
|
| 133 |
-
},
|
| 134 |
-
"evaluations.qa.normalized_score": {
|
| 135 |
-
group: "evaluation",
|
| 136 |
-
size: COLUMN_SIZES.BENCHMARK,
|
| 137 |
-
defaultVisible: true,
|
| 138 |
-
label: "QA",
|
| 139 |
-
},
|
| 140 |
-
"evaluations.fns.normalized_score": {
|
| 141 |
-
group: "evaluation",
|
| 142 |
-
size: COLUMN_SIZES.BENCHMARK,
|
| 143 |
-
defaultVisible: true,
|
| 144 |
-
label: "FNS",
|
| 145 |
-
},
|
| 146 |
-
"evaluations.finnum.normalized_score": {
|
| 147 |
-
group: "evaluation",
|
| 148 |
-
size: COLUMN_SIZES.BENCHMARK,
|
| 149 |
-
defaultVisible: true,
|
| 150 |
-
label: "FinNum",
|
| 151 |
-
},
|
| 152 |
-
"evaluations.fintext.normalized_score": {
|
| 153 |
-
group: "evaluation",
|
| 154 |
-
size: COLUMN_SIZES.BENCHMARK,
|
| 155 |
-
defaultVisible: true,
|
| 156 |
-
label: "FinText",
|
| 157 |
-
},
|
| 158 |
-
},
|
| 159 |
-
MODEL_INFO: {
|
| 160 |
-
"metadata.co2_cost": {
|
| 161 |
-
group: "model_info",
|
| 162 |
-
size: COLUMN_SIZES.CO2_COST,
|
| 163 |
-
defaultVisible: true,
|
| 164 |
-
label: "CO₂ Cost (kg)",
|
| 165 |
-
},
|
| 166 |
-
"metadata.hub_hearts": {
|
| 167 |
-
group: "model_info",
|
| 168 |
-
size: COLUMN_SIZES.HUB_HEARTS,
|
| 169 |
-
defaultVisible: false,
|
| 170 |
-
label: "Hub ❤️",
|
| 171 |
-
},
|
| 172 |
-
"model.architecture": {
|
| 173 |
-
group: "model_info",
|
| 174 |
-
size: COLUMN_SIZES.ARCHITECTURE,
|
| 175 |
-
defaultVisible: false,
|
| 176 |
-
label: "Architecture",
|
| 177 |
-
},
|
| 178 |
-
"model.precision": {
|
| 179 |
-
group: "model_info",
|
| 180 |
-
size: COLUMN_SIZES.PRECISION,
|
| 181 |
-
defaultVisible: false,
|
| 182 |
-
label: "Precision",
|
| 183 |
-
},
|
| 184 |
-
"metadata.params_billions": {
|
| 185 |
-
group: "model_info",
|
| 186 |
-
size: COLUMN_SIZES.PARAMS,
|
| 187 |
-
defaultVisible: false,
|
| 188 |
-
label: "Parameters (B)",
|
| 189 |
-
},
|
| 190 |
-
"metadata.hub_license": {
|
| 191 |
-
group: "model_info",
|
| 192 |
-
size: COLUMN_SIZES.LICENSE,
|
| 193 |
-
defaultVisible: false,
|
| 194 |
-
label: "License",
|
| 195 |
-
},
|
| 196 |
-
"model.has_chat_template": {
|
| 197 |
-
group: "model_info",
|
| 198 |
-
size: COLUMN_SIZES.CHAT_TEMPLATE,
|
| 199 |
-
defaultVisible: false,
|
| 200 |
-
label: "Chat Template",
|
| 201 |
-
},
|
| 202 |
-
},
|
| 203 |
-
ADDITIONAL_INFO: {
|
| 204 |
-
"metadata.upload_date": {
|
| 205 |
-
group: "additional_info",
|
| 206 |
-
size: COLUMN_SIZES.UPLOAD_DATE,
|
| 207 |
-
defaultVisible: false,
|
| 208 |
-
label: "Upload Date",
|
| 209 |
-
},
|
| 210 |
-
"metadata.submission_date": {
|
| 211 |
-
group: "additional_info",
|
| 212 |
-
size: COLUMN_SIZES.SUBMISSION_DATE,
|
| 213 |
-
defaultVisible: false,
|
| 214 |
-
label: "Submission Date",
|
| 215 |
-
},
|
| 216 |
-
"metadata.generation": {
|
| 217 |
-
group: "additional_info",
|
| 218 |
-
size: COLUMN_SIZES.GENERATION,
|
| 219 |
-
defaultVisible: false,
|
| 220 |
-
label: "Generation",
|
| 221 |
-
},
|
| 222 |
-
"metadata.base_model": {
|
| 223 |
-
group: "additional_info",
|
| 224 |
-
size: COLUMN_SIZES.BASE_MODEL,
|
| 225 |
-
defaultVisible: false,
|
| 226 |
-
label: "Base Model",
|
| 227 |
-
},
|
| 228 |
-
"features.is_not_available_on_hub": {
|
| 229 |
-
group: "additional_info",
|
| 230 |
-
size: COLUMN_SIZES.HUB_AVAILABILITY,
|
| 231 |
-
defaultVisible: false,
|
| 232 |
-
label: "Hub Availability",
|
| 233 |
-
},
|
| 234 |
-
"features.is_highlighted_by_maintainer": {
|
| 235 |
-
group: "additional_info",
|
| 236 |
-
size: COLUMN_SIZES.OFFICIAL_PROVIDER,
|
| 237 |
-
defaultVisible: false,
|
| 238 |
-
label: "Only Official Providers",
|
| 239 |
-
},
|
| 240 |
-
"features.is_moe": {
|
| 241 |
-
group: "additional_info",
|
| 242 |
-
size: COLUMN_SIZES.MOE,
|
| 243 |
-
defaultVisible: false,
|
| 244 |
-
label: "Mixture of Experts",
|
| 245 |
-
},
|
| 246 |
-
"features.is_flagged": {
|
| 247 |
-
group: "additional_info",
|
| 248 |
-
size: COLUMN_SIZES.FLAG_STATUS,
|
| 249 |
-
defaultVisible: false,
|
| 250 |
-
label: "Flag Status",
|
| 251 |
-
},
|
| 252 |
-
},
|
| 253 |
};
|
| 254 |
|
| 255 |
// Combine all columns for backward compatibility
|
|
|
|
| 98 |
|
| 99 |
// Column definitions with organized structure
|
| 100 |
const COLUMNS = {
|
| 101 |
+
FIXED: {
|
| 102 |
+
rank: {
|
| 103 |
+
group: "fixed",
|
| 104 |
+
size: COLUMN_SIZES.RANK,
|
| 105 |
+
defaultVisible: true,
|
| 106 |
+
label: "Rank",
|
| 107 |
+
},
|
| 108 |
+
"model.type_icon": {
|
| 109 |
+
group: "fixed",
|
| 110 |
+
size: COLUMN_SIZES.TYPE_ICON,
|
| 111 |
+
defaultVisible: true,
|
| 112 |
+
label: "Type",
|
| 113 |
+
},
|
| 114 |
+
id: {
|
| 115 |
+
group: "fixed",
|
| 116 |
+
size: COLUMN_SIZES.MODEL,
|
| 117 |
+
defaultVisible: true,
|
| 118 |
+
label: "Model",
|
| 119 |
+
},
|
| 120 |
+
"model.average_score": {
|
| 121 |
+
group: "fixed",
|
| 122 |
+
size: COLUMN_SIZES.AVERAGE_SCORE,
|
| 123 |
+
defaultVisible: true,
|
| 124 |
+
label: "Average Score",
|
| 125 |
+
},
|
| 126 |
},
|
| 127 |
+
EVALUATION: {
|
| 128 |
+
"evaluations.bc5cdr_chemical.normalized_score": {
|
| 129 |
+
group: "evaluation",
|
| 130 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 131 |
+
defaultVisible: true,
|
| 132 |
+
label: "BC5CDR-chemical",
|
| 133 |
+
},
|
| 134 |
+
"evaluations.ncbi_disease.normalized_score": {
|
| 135 |
+
group: "evaluation",
|
| 136 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 137 |
+
defaultVisible: true,
|
| 138 |
+
label: "NCBI Disease",
|
| 139 |
+
},
|
| 140 |
+
"evaluations.chemprot.normalized_score": {
|
| 141 |
+
group: "evaluation",
|
| 142 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 143 |
+
defaultVisible: true,
|
| 144 |
+
label: "ChemProt",
|
| 145 |
+
},
|
| 146 |
+
"evaluations.ddi2013.normalized_score": {
|
| 147 |
+
group: "evaluation",
|
| 148 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 149 |
+
defaultVisible: true,
|
| 150 |
+
label: "DDI2013",
|
| 151 |
+
},
|
| 152 |
+
"evaluations.hoc.normalized_score": {
|
| 153 |
+
group: "evaluation",
|
| 154 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 155 |
+
defaultVisible: true,
|
| 156 |
+
label: "HoC",
|
| 157 |
+
},
|
| 158 |
+
"evaluations.litcovid.normalized_score": {
|
| 159 |
+
group: "evaluation",
|
| 160 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 161 |
+
defaultVisible: true,
|
| 162 |
+
label: "LitCovid",
|
| 163 |
+
},
|
| 164 |
+
"evaluations.medqa.normalized_score": {
|
| 165 |
+
group: "evaluation",
|
| 166 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 167 |
+
defaultVisible: true,
|
| 168 |
+
label: "MedQA (5-Option)",
|
| 169 |
+
},
|
| 170 |
+
"evaluations.pubmedqa.normalized_score": {
|
| 171 |
+
group: "evaluation",
|
| 172 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 173 |
+
defaultVisible: true,
|
| 174 |
+
label: "PubMedQA",
|
| 175 |
+
},
|
| 176 |
+
"evaluations.pubmed.normalized_score": {
|
| 177 |
+
group: "evaluation",
|
| 178 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 179 |
+
defaultVisible: true,
|
| 180 |
+
label: "PubMed",
|
| 181 |
+
},
|
| 182 |
+
"evaluations.ms2.normalized_score": {
|
| 183 |
+
group: "evaluation",
|
| 184 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 185 |
+
defaultVisible: true,
|
| 186 |
+
label: "MS^2",
|
| 187 |
+
},
|
| 188 |
+
"evaluations.cochrane_pls.normalized_score": {
|
| 189 |
+
group: "evaluation",
|
| 190 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 191 |
+
defaultVisible: true,
|
| 192 |
+
label: "Cochrane PLS",
|
| 193 |
+
},
|
| 194 |
+
"evaluations.plos.normalized_score": {
|
| 195 |
+
group: "evaluation",
|
| 196 |
+
size: COLUMN_SIZES.BENCHMARK,
|
| 197 |
+
defaultVisible: true,
|
| 198 |
+
label: "PLOS",
|
| 199 |
+
},
|
| 200 |
},
|
| 201 |
+
MODEL_INFO: {
|
| 202 |
+
"metadata.co2_cost": {
|
| 203 |
+
group: "model_info",
|
| 204 |
+
size: COLUMN_SIZES.CO2_COST,
|
| 205 |
+
defaultVisible: true,
|
| 206 |
+
label: "CO₂ Cost (kg)",
|
| 207 |
+
},
|
| 208 |
+
"metadata.hub_hearts": {
|
| 209 |
+
group: "model_info",
|
| 210 |
+
size: COLUMN_SIZES.HUB_HEARTS,
|
| 211 |
+
defaultVisible: false,
|
| 212 |
+
label: "Hub ❤️",
|
| 213 |
+
},
|
| 214 |
+
"model.architecture": {
|
| 215 |
+
group: "model_info",
|
| 216 |
+
size: COLUMN_SIZES.ARCHITECTURE,
|
| 217 |
+
defaultVisible: false,
|
| 218 |
+
label: "Architecture",
|
| 219 |
+
},
|
| 220 |
+
"model.precision": {
|
| 221 |
+
group: "model_info",
|
| 222 |
+
size: COLUMN_SIZES.PRECISION,
|
| 223 |
+
defaultVisible: false,
|
| 224 |
+
label: "Precision",
|
| 225 |
+
},
|
| 226 |
+
"metadata.params_billions": {
|
| 227 |
+
group: "model_info",
|
| 228 |
+
size: COLUMN_SIZES.PARAMS,
|
| 229 |
+
defaultVisible: false,
|
| 230 |
+
label: "Parameters (B)",
|
| 231 |
+
},
|
| 232 |
+
"metadata.hub_license": {
|
| 233 |
+
group: "model_info",
|
| 234 |
+
size: COLUMN_SIZES.LICENSE,
|
| 235 |
+
defaultVisible: false,
|
| 236 |
+
label: "License",
|
| 237 |
+
},
|
| 238 |
+
"model.has_chat_template": {
|
| 239 |
+
group: "model_info",
|
| 240 |
+
size: COLUMN_SIZES.CHAT_TEMPLATE,
|
| 241 |
+
defaultVisible: false,
|
| 242 |
+
label: "Chat Template",
|
| 243 |
+
},
|
| 244 |
},
|
| 245 |
+
ADDITIONAL_INFO: {
|
| 246 |
+
"metadata.upload_date": {
|
| 247 |
+
group: "additional_info",
|
| 248 |
+
size: COLUMN_SIZES.UPLOAD_DATE,
|
| 249 |
+
defaultVisible: false,
|
| 250 |
+
label: "Upload Date",
|
| 251 |
+
},
|
| 252 |
+
"metadata.submission_date": {
|
| 253 |
+
group: "additional_info",
|
| 254 |
+
size: COLUMN_SIZES.SUBMISSION_DATE,
|
| 255 |
+
defaultVisible: false,
|
| 256 |
+
label: "Submission Date",
|
| 257 |
+
},
|
| 258 |
+
"metadata.generation": {
|
| 259 |
+
group: "additional_info",
|
| 260 |
+
size: COLUMN_SIZES.GENERATION,
|
| 261 |
+
defaultVisible: false,
|
| 262 |
+
label: "Generation",
|
| 263 |
+
},
|
| 264 |
+
"metadata.base_model": {
|
| 265 |
+
group: "additional_info",
|
| 266 |
+
size: COLUMN_SIZES.BASE_MODEL,
|
| 267 |
+
defaultVisible: false,
|
| 268 |
+
label: "Base Model",
|
| 269 |
+
},
|
| 270 |
+
"features.is_not_available_on_hub": {
|
| 271 |
+
group: "additional_info",
|
| 272 |
+
size: COLUMN_SIZES.HUB_AVAILABILITY,
|
| 273 |
+
defaultVisible: false,
|
| 274 |
+
label: "Hub Availability",
|
| 275 |
+
},
|
| 276 |
+
"features.is_highlighted_by_maintainer": {
|
| 277 |
+
group: "additional_info",
|
| 278 |
+
size: COLUMN_SIZES.OFFICIAL_PROVIDER,
|
| 279 |
+
defaultVisible: false,
|
| 280 |
+
label: "Only Official Providers",
|
| 281 |
+
},
|
| 282 |
+
"features.is_moe": {
|
| 283 |
+
group: "additional_info",
|
| 284 |
+
size: COLUMN_SIZES.MOE,
|
| 285 |
+
defaultVisible: false,
|
| 286 |
+
label: "Mixture of Experts",
|
| 287 |
+
},
|
| 288 |
+
"features.is_flagged": {
|
| 289 |
+
group: "additional_info",
|
| 290 |
+
size: COLUMN_SIZES.FLAG_STATUS,
|
| 291 |
+
defaultVisible: false,
|
| 292 |
+
label: "Flag Status",
|
| 293 |
+
},
|
| 294 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
};
|
| 296 |
|
| 297 |
// Combine all columns for backward compatibility
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/tooltips.js
CHANGED
|
@@ -29,209 +29,289 @@ const createTooltipContent = (title, items) => (
|
|
| 29 |
);
|
| 30 |
|
| 31 |
export const COLUMN_TOOLTIPS = {
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
]),
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
]),
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
]),
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
]),
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
]),
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
],
|
| 120 |
-
},
|
| 121 |
-
{
|
| 122 |
-
label: "Impact",
|
| 123 |
-
description: "How architecture affects model capabilities",
|
| 124 |
-
subItems: [
|
| 125 |
-
"Base models are expected to perform less well on instruction following evaluations, like IFEval.",
|
| 126 |
-
"Fine-tuned and chat models can be more verbose and more chatty than base models.",
|
| 127 |
-
"Merged models tend to exhibit good performance on benchmarks, which do not translate to real-world situations.",
|
| 128 |
-
],
|
| 129 |
-
},
|
| 130 |
-
]),
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
},
|
| 144 |
-
{
|
| 145 |
-
label: "Impact",
|
| 146 |
-
description: "How precision affects model deployment",
|
| 147 |
-
subItems: [
|
| 148 |
-
"Higher precision = better accuracy but more memory usage",
|
| 149 |
-
"Lower precision = faster inference and smaller size",
|
| 150 |
-
"Trade-off between model quality and resource usage",
|
| 151 |
-
],
|
| 152 |
-
},
|
| 153 |
-
]),
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
label: "Purpose",
|
| 167 |
-
description: "Why do people want to hide these models?",
|
| 168 |
-
subItems: [
|
| 169 |
-
"Mixture of Experts: These models can be too parameter heavy",
|
| 170 |
-
"Merged models: Performance on benchmarks tend to be inflated compared to real life usage",
|
| 171 |
-
"Contaminated: Performance on benchmarks is inflated and not reflecting real life usage",
|
| 172 |
-
],
|
| 173 |
-
},
|
| 174 |
-
]),
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
]),
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
};
|
| 236 |
|
| 237 |
export const UI_TOOLTIPS = {
|
|
|
|
| 29 |
);
|
| 30 |
|
| 31 |
export const COLUMN_TOOLTIPS = {
|
| 32 |
+
AVERAGE: createTooltipContent("Average score across all benchmarks:", [
|
| 33 |
+
{
|
| 34 |
+
label: "Calculation",
|
| 35 |
+
description:
|
| 36 |
+
"Weighted average of normalized scores from all benchmarks",
|
| 37 |
+
subItems: [
|
| 38 |
+
"Each benchmark is normalized to a 0-100 scale",
|
| 39 |
+
"All normalised benchmarks are then averaged together",
|
| 40 |
+
],
|
| 41 |
+
},
|
| 42 |
+
]),
|
| 43 |
|
| 44 |
+
BC5CDR_CHEMICAL: createTooltipContent("Placeholder", [
|
| 45 |
+
{
|
| 46 |
+
label: "Purpose",
|
| 47 |
+
description: "Placeholder",
|
| 48 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
label: "Scoring: Placeholder",
|
| 52 |
+
description: "Placeholder",
|
| 53 |
+
},
|
| 54 |
+
]),
|
|
|
|
| 55 |
|
| 56 |
+
NCBI_DISEASE: createTooltipContent("Placeholder", [
|
| 57 |
+
{
|
| 58 |
+
label: "Purpose",
|
| 59 |
+
description: "Placeholder",
|
| 60 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
label: "Scoring: Placeholder",
|
| 64 |
+
description: "Placeholder",
|
| 65 |
+
},
|
| 66 |
+
]),
|
|
|
|
| 67 |
|
| 68 |
+
CHEMPROT: createTooltipContent("Placeholder", [
|
| 69 |
+
{
|
| 70 |
+
label: "Purpose",
|
| 71 |
+
description: "Placeholder",
|
| 72 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
label: "Scoring: Placeholder",
|
| 76 |
+
description: "Placeholder",
|
| 77 |
+
},
|
| 78 |
+
]),
|
|
|
|
| 79 |
|
| 80 |
+
DDI2013: createTooltipContent("Placeholder", [
|
| 81 |
+
{
|
| 82 |
+
label: "Purpose",
|
| 83 |
+
description: "Placeholder",
|
| 84 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
label: "Scoring: Placeholder",
|
| 88 |
+
description: "Placeholder",
|
| 89 |
+
},
|
| 90 |
+
]),
|
|
|
|
| 91 |
|
| 92 |
+
HOC: createTooltipContent("Placeholder", [
|
| 93 |
+
{
|
| 94 |
+
label: "Purpose",
|
| 95 |
+
description: "Placeholder",
|
| 96 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
label: "Scoring: Placeholder",
|
| 100 |
+
description: "Placeholder",
|
| 101 |
+
},
|
| 102 |
+
]),
|
|
|
|
| 103 |
|
| 104 |
+
LITCOVID: createTooltipContent("Placeholder", [
|
| 105 |
+
{
|
| 106 |
+
label: "Purpose",
|
| 107 |
+
description: "Placeholder",
|
| 108 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
label: "Scoring: Placeholder",
|
| 112 |
+
description: "Placeholder",
|
| 113 |
+
},
|
| 114 |
+
]),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
MEDQA: createTooltipContent("Placeholder", [
|
| 117 |
+
{
|
| 118 |
+
label: "Purpose",
|
| 119 |
+
description: "Placeholder",
|
| 120 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
label: "Scoring: Placeholder",
|
| 124 |
+
description: "Placeholder",
|
| 125 |
+
},
|
| 126 |
+
]),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
PUBMEDQA: createTooltipContent("Placeholder", [
|
| 129 |
+
{
|
| 130 |
+
label: "Purpose",
|
| 131 |
+
description: "Placeholder",
|
| 132 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
label: "Scoring: Placeholder",
|
| 136 |
+
description: "Placeholder",
|
| 137 |
+
},
|
| 138 |
+
]),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
PUBMED: createTooltipContent("Placeholder", [
|
| 141 |
+
{
|
| 142 |
+
label: "Purpose",
|
| 143 |
+
description: "Placeholder",
|
| 144 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
label: "Scoring: Placeholder",
|
| 148 |
+
description: "Placeholder",
|
| 149 |
+
},
|
| 150 |
+
]),
|
| 151 |
|
| 152 |
+
MS2: createTooltipContent("Placeholder", [
|
| 153 |
+
{
|
| 154 |
+
label: "Purpose",
|
| 155 |
+
description: "Placeholder",
|
| 156 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
label: "Scoring: Placeholder",
|
| 160 |
+
description: "Placeholder",
|
| 161 |
+
},
|
| 162 |
+
]),
|
|
|
|
| 163 |
|
| 164 |
+
COCHRANE_PLS: createTooltipContent("Placeholder", [
|
| 165 |
+
{
|
| 166 |
+
label: "Purpose",
|
| 167 |
+
description: "Placeholder",
|
| 168 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
label: "Scoring: Placeholder",
|
| 172 |
+
description: "Placeholder",
|
| 173 |
+
},
|
| 174 |
+
]),
|
| 175 |
+
|
| 176 |
+
PLOS: createTooltipContent("Placeholder", [
|
| 177 |
+
{
|
| 178 |
+
label: "Purpose",
|
| 179 |
+
description: "Placeholder",
|
| 180 |
+
subItems: ["Placeholder", "Placeholder"],
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
label: "Scoring: Placeholder",
|
| 184 |
+
description: "Placeholder",
|
| 185 |
+
},
|
| 186 |
+
]),
|
| 187 |
+
|
| 188 |
+
ARCHITECTURE: createTooltipContent("Model Architecture Information:", [
|
| 189 |
+
{
|
| 190 |
+
label: "Definition",
|
| 191 |
+
description: "The fundamental structure and design of the model",
|
| 192 |
+
subItems: [
|
| 193 |
+
"Pretrained: Foundational models, initially trained on large datasets without task-specific tuning, serving as a versatile base for further development.",
|
| 194 |
+
"Continuously Pretrained: Base models trained with a data mix evolving as the model is trained, with the addition of specialized data during the last training steps.",
|
| 195 |
+
"Fine-tuned: Base models, fine-tuned on specialised domain data (legal, medical, ...), and optimized for particular tasks.",
|
| 196 |
+
"Chat: Models fine-tuned with IFT, RLHF, DPO, and other techniques, to handle conversational contexts effectively.",
|
| 197 |
+
"Merged: Combining multiple models through weights averaging or similar methods.",
|
| 198 |
+
"Multimodal: Models which can handle several modalities (text & image/audio/video/...). We only evaluate the text capabilities.",
|
| 199 |
+
],
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
label: "Impact",
|
| 203 |
+
description: "How architecture affects model capabilities",
|
| 204 |
+
subItems: [
|
| 205 |
+
"Base models are expected to perform less well on instruction following evaluations, like IFEval.",
|
| 206 |
+
"Fine-tuned and chat models can be more verbose and more chatty than base models.",
|
| 207 |
+
"Merged models tend to exhibit good performance on benchmarks, which do not translate to real-world situations.",
|
| 208 |
+
],
|
| 209 |
+
},
|
| 210 |
+
]),
|
| 211 |
+
|
| 212 |
+
PRECISION: createTooltipContent("Numerical Precision Format:", [
|
| 213 |
+
{
|
| 214 |
+
label: "Overview",
|
| 215 |
+
description:
|
| 216 |
+
"Data format used to store model weights and perform computations",
|
| 217 |
+
subItems: [
|
| 218 |
+
"bfloat16: Half precision (Brain Float format), good for stability",
|
| 219 |
+
"float16: Half precision",
|
| 220 |
+
"8bit/4bit: Quantized formats, for efficiency",
|
| 221 |
+
"GPTQ/AWQ: Quantized methods",
|
| 222 |
+
],
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
label: "Impact",
|
| 226 |
+
description: "How precision affects model deployment",
|
| 227 |
+
subItems: [
|
| 228 |
+
"Higher precision = better accuracy but more memory usage",
|
| 229 |
+
"Lower precision = faster inference and smaller size",
|
| 230 |
+
"Trade-off between model quality and resource usage",
|
| 231 |
+
],
|
| 232 |
+
},
|
| 233 |
+
]),
|
| 234 |
+
|
| 235 |
+
FLAGS: createTooltipContent("Model Flags and Special Features:", [
|
| 236 |
+
{
|
| 237 |
+
label: "Filters",
|
| 238 |
+
subItems: [
|
| 239 |
+
"Mixture of Expert: Uses a MoE architecture",
|
| 240 |
+
"Merged models: Created by averaging other models",
|
| 241 |
+
"Contaminated: Flagged by users from the community for (possibly accidental) cheating",
|
| 242 |
+
"Unavailable: No longer on the hub (private, deleted) or missing a license tag",
|
| 243 |
+
],
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
label: "Purpose",
|
| 247 |
+
description: "Why do people want to hide these models?",
|
| 248 |
+
subItems: [
|
| 249 |
+
"Mixture of Experts: These models can be too parameter heavy",
|
| 250 |
+
"Merged models: Performance on benchmarks tend to be inflated compared to real life usage",
|
| 251 |
+
"Contaminated: Performance on benchmarks is inflated and not reflecting real life usage",
|
| 252 |
+
],
|
| 253 |
+
},
|
| 254 |
+
]),
|
| 255 |
+
|
| 256 |
+
PARAMETERS: createTooltipContent("Model Parameters:", [
|
| 257 |
+
{
|
| 258 |
+
label: "Measurement",
|
| 259 |
+
description: "Total number of trainable parameters in billions",
|
| 260 |
+
subItems: [
|
| 261 |
+
"Indicates model capacity and complexity",
|
| 262 |
+
"Correlates with computational requirements",
|
| 263 |
+
"Influences memory usage and inference speed",
|
| 264 |
+
],
|
| 265 |
+
},
|
| 266 |
+
]),
|
| 267 |
+
|
| 268 |
+
LICENSE: createTooltipContent("Model License Information:", [
|
| 269 |
+
{
|
| 270 |
+
label: "Importance",
|
| 271 |
+
description: "Legal terms governing model usage and distribution",
|
| 272 |
+
subItems: [
|
| 273 |
+
"Commercial vs non-commercial use",
|
| 274 |
+
"Attribution requirements",
|
| 275 |
+
"Modification and redistribution rights",
|
| 276 |
+
"Liability and warranty terms",
|
| 277 |
+
],
|
| 278 |
+
},
|
| 279 |
+
]),
|
| 280 |
+
|
| 281 |
+
CO2_COST: createTooltipContent("Carbon Dioxide Emissions:", [
|
| 282 |
+
{
|
| 283 |
+
label: "What is it?",
|
| 284 |
+
description: "CO₂ emissions of the model evaluation ",
|
| 285 |
+
subItems: [
|
| 286 |
+
"Only focuses on model inference for our specific setup",
|
| 287 |
+
"Considers data center location and energy mix",
|
| 288 |
+
"Allows equivalent comparision of models on our use case",
|
| 289 |
+
],
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
label: "Why it matters",
|
| 293 |
+
description: "Environmental impact of AI model training",
|
| 294 |
+
subItems: [
|
| 295 |
+
"Large models can have significant carbon footprints",
|
| 296 |
+
"Helps make informed choices about model selection",
|
| 297 |
+
],
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
label: "Learn more",
|
| 301 |
+
description:
|
| 302 |
+
"For detailed information about our CO₂ calculation methodology, visit:",
|
| 303 |
+
subItems: [
|
| 304 |
+
<a
|
| 305 |
+
href="https://huggingface.co/docs/leaderboards/open_llm_leaderboard/emissions"
|
| 306 |
+
target="_blank"
|
| 307 |
+
rel="noopener noreferrer"
|
| 308 |
+
style={{ color: "#90caf9" }}
|
| 309 |
+
>
|
| 310 |
+
Carbon Emissions Documentation ↗
|
| 311 |
+
</a>,
|
| 312 |
+
],
|
| 313 |
+
},
|
| 314 |
+
]),
|
| 315 |
};
|
| 316 |
|
| 317 |
export const UI_TOOLTIPS = {
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/utils/columnUtils.js
CHANGED
|
@@ -451,614 +451,757 @@ export const createColumns = (
|
|
| 451 |
onTogglePin,
|
| 452 |
hasPinnedRows = false
|
| 453 |
) => {
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
|
|
|
|
|
|
| 505 |
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["model.average_score"],
|
| 648 |
-
meta: {
|
| 649 |
-
headerStyle: {
|
| 650 |
-
borderLeft: (theme) =>
|
| 651 |
-
`2px solid ${alpha(
|
| 652 |
-
theme.palette.divider,
|
| 653 |
-
theme.palette.mode === "dark" ? 0.1 : 0.2
|
| 654 |
-
)}`,
|
| 655 |
-
borderRight: (theme) =>
|
| 656 |
-
`2px solid ${alpha(
|
| 657 |
-
theme.palette.divider,
|
| 658 |
-
theme.palette.mode === "dark" ? 0.1 : 0.2
|
| 659 |
-
)}`,
|
| 660 |
},
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 684 |
|
| 685 |
-
|
| 686 |
-
|
| 687 |
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
|
|
|
|
|
|
| 751 |
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 799 |
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
|
| 954 |
-
|
| 955 |
-
|
| 956 |
-
|
| 957 |
-
|
| 958 |
-
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
|
| 962 |
-
|
| 963 |
-
|
| 964 |
-
|
| 965 |
-
|
| 966 |
-
|
| 967 |
-
|
| 968 |
-
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
|
| 1007 |
-
|
| 1008 |
-
|
| 1009 |
-
|
| 1010 |
-
|
| 1011 |
-
|
| 1012 |
-
|
| 1013 |
-
|
| 1014 |
-
|
| 1015 |
-
|
| 1016 |
-
|
| 1017 |
-
|
| 1018 |
-
|
| 1019 |
-
|
| 1020 |
-
|
| 1021 |
-
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
|
| 1025 |
-
|
| 1026 |
-
|
| 1027 |
-
|
| 1028 |
-
|
| 1029 |
-
|
| 1030 |
-
|
| 1031 |
-
|
| 1032 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1033 |
|
| 1034 |
-
|
| 1035 |
-
|
| 1036 |
-
|
| 1037 |
-
|
| 1038 |
-
|
| 1039 |
-
|
| 1040 |
-
|
| 1041 |
-
|
| 1042 |
-
|
| 1043 |
-
|
| 1044 |
-
|
| 1045 |
-
|
| 1046 |
-
|
| 1047 |
-
|
| 1048 |
-
|
| 1049 |
-
|
| 1050 |
-
|
| 1051 |
-
|
| 1052 |
-
|
| 1053 |
-
|
| 1054 |
-
|
| 1055 |
-
|
| 1056 |
-
|
| 1057 |
-
|
| 1058 |
-
|
| 1059 |
-
|
| 1060 |
-
|
| 1061 |
-
|
| 1062 |
|
| 1063 |
-
|
| 1064 |
};
|
|
|
|
| 451 |
onTogglePin,
|
| 452 |
hasPinnedRows = false
|
| 453 |
) => {
|
| 454 |
+
// Ajuster les tailles des colonnes en fonction de la présence de lignes épinglées
|
| 455 |
+
const getColumnSize = (defaultSize) =>
|
| 456 |
+
hasPinnedRows ? "auto" : `${defaultSize}px`;
|
| 457 |
|
| 458 |
+
const baseColumns = [
|
| 459 |
+
{
|
| 460 |
+
accessorKey: "isPinned",
|
| 461 |
+
header: () => null,
|
| 462 |
+
cell: ({ row }) => (
|
| 463 |
+
<Box
|
| 464 |
+
sx={{
|
| 465 |
+
display: "flex",
|
| 466 |
+
alignItems: "center",
|
| 467 |
+
justifyContent: "center",
|
| 468 |
+
height: "100%",
|
| 469 |
+
}}
|
| 470 |
+
>
|
| 471 |
+
<IconButton
|
| 472 |
+
size="small"
|
| 473 |
+
onClick={(e) => {
|
| 474 |
+
e.stopPropagation();
|
| 475 |
+
e.preventDefault();
|
| 476 |
+
onTogglePin(row.original.id);
|
| 477 |
+
}}
|
| 478 |
+
sx={{
|
| 479 |
+
padding: 0.5,
|
| 480 |
+
color: row.original.isPinned
|
| 481 |
+
? "primary.main"
|
| 482 |
+
: "grey.400",
|
| 483 |
+
"&:hover": {
|
| 484 |
+
color: "primary.main",
|
| 485 |
+
},
|
| 486 |
+
}}
|
| 487 |
+
>
|
| 488 |
+
{row.original.isPinned ? (
|
| 489 |
+
<PushPinIcon fontSize="small" />
|
| 490 |
+
) : (
|
| 491 |
+
<PushPinOutlinedIcon fontSize="small" />
|
| 492 |
+
)}
|
| 493 |
+
</IconButton>
|
| 494 |
+
</Box>
|
| 495 |
+
),
|
| 496 |
+
enableSorting: false,
|
| 497 |
+
size: getColumnSize(40),
|
| 498 |
+
},
|
| 499 |
+
{
|
| 500 |
+
accessorKey: "rank",
|
| 501 |
+
header: createHeaderCell("Rank"),
|
| 502 |
+
cell: ({ row }) => {
|
| 503 |
+
const rank =
|
| 504 |
+
rankingMode === "static"
|
| 505 |
+
? row.original.static_rank
|
| 506 |
+
: row.original.dynamic_rank;
|
| 507 |
|
| 508 |
+
return (
|
| 509 |
+
<RankIndicator
|
| 510 |
+
rank={rank}
|
| 511 |
+
previousRank={row.original.previous_rank}
|
| 512 |
+
mode="static"
|
| 513 |
+
/>
|
| 514 |
+
);
|
| 515 |
+
},
|
| 516 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["rank"],
|
| 517 |
+
},
|
| 518 |
+
{
|
| 519 |
+
id: "model_type",
|
| 520 |
+
accessorFn: (row) => row.model.type,
|
| 521 |
+
header: createHeaderCell("Type"),
|
| 522 |
+
sortingFn: typeColumnSort,
|
| 523 |
+
cell: ({ row }) => (
|
| 524 |
+
<Box
|
| 525 |
+
sx={{
|
| 526 |
+
display: "flex",
|
| 527 |
+
alignItems: "center",
|
| 528 |
+
justifyContent: "center",
|
| 529 |
+
width: "100%",
|
| 530 |
+
}}
|
| 531 |
+
>
|
| 532 |
+
<Tooltip title={row.original.model.type}>
|
| 533 |
+
<Typography
|
| 534 |
+
sx={{
|
| 535 |
+
fontSize: "1.2rem",
|
| 536 |
+
cursor: "help",
|
| 537 |
+
lineHeight: 1,
|
| 538 |
+
fontFamily:
|
| 539 |
+
'"Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji", sans-serif',
|
| 540 |
+
}}
|
| 541 |
+
>
|
| 542 |
+
{getModelTypeIcon(row.original.model.type)}
|
| 543 |
+
</Typography>
|
| 544 |
+
</Tooltip>
|
| 545 |
+
</Box>
|
| 546 |
+
),
|
| 547 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["model.type_icon"],
|
| 548 |
+
},
|
| 549 |
+
{
|
| 550 |
+
accessorKey: "id",
|
| 551 |
+
header: createModelHeader(totalModels),
|
| 552 |
+
cell: ({ row }) => {
|
| 553 |
+
const textSearch = extractTextSearch(searchValue);
|
| 554 |
+
const modelName = row.original.model.name;
|
| 555 |
|
| 556 |
+
return (
|
| 557 |
+
<Box
|
| 558 |
+
sx={{
|
| 559 |
+
width: "100%",
|
| 560 |
+
display: "flex",
|
| 561 |
+
alignItems: "center",
|
| 562 |
+
gap: 1,
|
| 563 |
+
}}
|
| 564 |
+
>
|
| 565 |
+
<Box
|
| 566 |
+
sx={{
|
| 567 |
+
display: "flex",
|
| 568 |
+
alignItems: "center",
|
| 569 |
+
gap: 1,
|
| 570 |
+
minWidth: 0,
|
| 571 |
+
flex: 1,
|
| 572 |
+
}}
|
| 573 |
+
>
|
| 574 |
+
<Link
|
| 575 |
+
href={`https://huggingface.co/${modelName}`}
|
| 576 |
+
target="_blank"
|
| 577 |
+
rel="noopener noreferrer"
|
| 578 |
+
aria-label={`View ${modelName} on Hugging Face Hub`}
|
| 579 |
+
title={TABLE_TOOLTIPS.HUB_LINK(modelName)}
|
| 580 |
+
sx={{
|
| 581 |
+
textDecoration: "none",
|
| 582 |
+
color: "info.main",
|
| 583 |
+
display: "flex",
|
| 584 |
+
alignItems: "center",
|
| 585 |
+
gap: 0.5,
|
| 586 |
+
"&:hover": {
|
| 587 |
+
textDecoration: "underline",
|
| 588 |
+
color: (theme) =>
|
| 589 |
+
theme.palette.mode === "dark"
|
| 590 |
+
? theme.palette.info.light
|
| 591 |
+
: theme.palette.info.dark,
|
| 592 |
+
"& svg": {
|
| 593 |
+
opacity: 0.8,
|
| 594 |
+
},
|
| 595 |
+
},
|
| 596 |
+
overflow: "hidden",
|
| 597 |
+
textOverflow: "ellipsis",
|
| 598 |
+
whiteSpace: "nowrap",
|
| 599 |
+
flex: 1,
|
| 600 |
+
minWidth: 0,
|
| 601 |
+
fontWeight:
|
| 602 |
+
row.original.static_rank <= 3
|
| 603 |
+
? 600
|
| 604 |
+
: "inherit",
|
| 605 |
+
}}
|
| 606 |
+
>
|
| 607 |
+
<HighlightedText
|
| 608 |
+
text={modelName}
|
| 609 |
+
searchValue={textSearch}
|
| 610 |
+
/>
|
| 611 |
+
<OpenInNewIcon
|
| 612 |
+
sx={{
|
| 613 |
+
fontSize: "0.75rem",
|
| 614 |
+
opacity: 0.6,
|
| 615 |
+
transition: "opacity 0.2s ease-in-out",
|
| 616 |
+
ml: 0.5,
|
| 617 |
+
flexShrink: 0,
|
| 618 |
+
}}
|
| 619 |
+
/>
|
| 620 |
+
</Link>
|
| 621 |
+
<Link
|
| 622 |
+
href={getDetailsUrl(modelName)}
|
| 623 |
+
target="_blank"
|
| 624 |
+
rel="noopener noreferrer"
|
| 625 |
+
aria-label={`View detailed evaluation results for ${modelName}`}
|
| 626 |
+
title={TABLE_TOOLTIPS.EVAL_RESULTS(modelName)}
|
| 627 |
+
sx={{
|
| 628 |
+
textDecoration: "none",
|
| 629 |
+
"&:hover": {
|
| 630 |
+
textDecoration: "underline",
|
| 631 |
+
"& svg": {
|
| 632 |
+
color: "text.primary",
|
| 633 |
+
},
|
| 634 |
+
},
|
| 635 |
+
display: "flex",
|
| 636 |
+
alignItems: "center",
|
| 637 |
+
color: "text.secondary",
|
| 638 |
+
flexShrink: 0,
|
| 639 |
+
mr: 0,
|
| 640 |
+
}}
|
| 641 |
+
>
|
| 642 |
+
<DatabaseIcon />
|
| 643 |
+
</Link>
|
| 644 |
+
</Box>
|
| 645 |
+
</Box>
|
| 646 |
+
);
|
| 647 |
+
},
|
| 648 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["id"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 649 |
},
|
| 650 |
+
{
|
| 651 |
+
accessorKey: "model.average_score",
|
| 652 |
+
header: createHeaderCell("Average", COLUMN_TOOLTIPS.AVERAGE),
|
| 653 |
+
cell: ({ row, getValue }) =>
|
| 654 |
+
createScoreCell(getValue, row, "model.average_score"),
|
| 655 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["model.average_score"],
|
| 656 |
+
meta: {
|
| 657 |
+
headerStyle: {
|
| 658 |
+
borderLeft: (theme) =>
|
| 659 |
+
`2px solid ${alpha(
|
| 660 |
+
theme.palette.divider,
|
| 661 |
+
theme.palette.mode === "dark" ? 0.1 : 0.2
|
| 662 |
+
)}`,
|
| 663 |
+
borderRight: (theme) =>
|
| 664 |
+
`2px solid ${alpha(
|
| 665 |
+
theme.palette.divider,
|
| 666 |
+
theme.palette.mode === "dark" ? 0.1 : 0.2
|
| 667 |
+
)}`,
|
| 668 |
+
},
|
| 669 |
+
cellStyle: (value) => ({
|
| 670 |
+
position: "relative",
|
| 671 |
+
overflow: "hidden",
|
| 672 |
+
padding: "8px 16px",
|
| 673 |
+
borderLeft: (theme) =>
|
| 674 |
+
`2px solid ${alpha(
|
| 675 |
+
theme.palette.divider,
|
| 676 |
+
theme.palette.mode === "dark" ? 0.1 : 0.2
|
| 677 |
+
)}`,
|
| 678 |
+
borderRight: (theme) =>
|
| 679 |
+
`2px solid ${alpha(
|
| 680 |
+
theme.palette.divider,
|
| 681 |
+
theme.palette.mode === "dark" ? 0.1 : 0.2
|
| 682 |
+
)}`,
|
| 683 |
+
}),
|
| 684 |
+
},
|
| 685 |
+
},
|
| 686 |
+
];
|
| 687 |
+
const createScoreCell = (getValue, row, field) => {
|
| 688 |
+
const value = getValue();
|
| 689 |
+
const rawValue = field.includes("normalized")
|
| 690 |
+
? row.original.evaluations[field.split(".")[1]]?.value
|
| 691 |
+
: value;
|
| 692 |
|
| 693 |
+
const isAverageColumn = field === "model.average_score";
|
| 694 |
+
const hasNoValue = value === null || value === undefined;
|
| 695 |
|
| 696 |
+
return (
|
| 697 |
+
<Box sx={commonStyles.cellContainer}>
|
| 698 |
+
{!hasNoValue &&
|
| 699 |
+
(scoreDisplay === "normalized" || isAverageColumn) && (
|
| 700 |
+
<Box
|
| 701 |
+
sx={{
|
| 702 |
+
position: "absolute",
|
| 703 |
+
left: -16,
|
| 704 |
+
top: -16,
|
| 705 |
+
height: "calc(100% + 32px)",
|
| 706 |
+
width: `calc(${value}% + 16px)`,
|
| 707 |
+
backgroundColor: getColorForValue(value),
|
| 708 |
+
opacity: (theme) =>
|
| 709 |
+
theme.palette.mode === "light" ? 0.1 : 0.2,
|
| 710 |
+
transition: "width 0.3s ease",
|
| 711 |
+
zIndex: 0,
|
| 712 |
+
}}
|
| 713 |
+
/>
|
| 714 |
+
)}
|
| 715 |
+
<Box
|
| 716 |
+
sx={{
|
| 717 |
+
position: "relative",
|
| 718 |
+
display: "flex",
|
| 719 |
+
alignItems: "center",
|
| 720 |
+
gap: 1,
|
| 721 |
+
zIndex: 1,
|
| 722 |
+
pl: isAverageColumn && !hasNoValue ? 1 : 0,
|
| 723 |
+
}}
|
| 724 |
+
>
|
| 725 |
+
{isAverageColumn && !hasNoValue && (
|
| 726 |
+
<Box
|
| 727 |
+
sx={{
|
| 728 |
+
width: 10,
|
| 729 |
+
height: 10,
|
| 730 |
+
borderRadius: "50%",
|
| 731 |
+
marginLeft: -1,
|
| 732 |
+
backgroundColor: getColorForValue(value),
|
| 733 |
+
}}
|
| 734 |
+
/>
|
| 735 |
+
)}
|
| 736 |
+
<Typography variant="body2">
|
| 737 |
+
{hasNoValue ? (
|
| 738 |
+
"-"
|
| 739 |
+
) : (
|
| 740 |
+
<>
|
| 741 |
+
{isAverageColumn ? (
|
| 742 |
+
<>
|
| 743 |
+
{value.toFixed(2)}
|
| 744 |
+
<span style={{ opacity: 0.5 }}> %</span>
|
| 745 |
+
</>
|
| 746 |
+
) : scoreDisplay === "normalized" ? (
|
| 747 |
+
<>
|
| 748 |
+
{value.toFixed(2)}
|
| 749 |
+
<span style={{ opacity: 0.5 }}> %</span>
|
| 750 |
+
</>
|
| 751 |
+
) : (
|
| 752 |
+
<>{rawValue.toFixed(2)}</>
|
| 753 |
+
)}
|
| 754 |
+
</>
|
| 755 |
+
)}
|
| 756 |
+
</Typography>
|
| 757 |
+
</Box>
|
| 758 |
+
</Box>
|
| 759 |
+
);
|
| 760 |
+
};
|
| 761 |
|
| 762 |
+
const evaluationColumns = [
|
| 763 |
+
{
|
| 764 |
+
accessorKey: "evaluations.bc5cdr_chemical.normalized_score",
|
| 765 |
+
header: createHeaderCell(
|
| 766 |
+
"BC5CDR-chemical",
|
| 767 |
+
COLUMN_TOOLTIPS.BC5CDR_CHEMICAL
|
| 768 |
+
),
|
| 769 |
+
cell: ({ row, getValue }) =>
|
| 770 |
+
createScoreCell(
|
| 771 |
+
getValue,
|
| 772 |
+
row,
|
| 773 |
+
"evaluations.bc5cdr_chemical.normalized_score"
|
| 774 |
+
),
|
| 775 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 776 |
+
"evaluations.bc5cdr_chemical.normalized_score"
|
| 777 |
+
],
|
| 778 |
+
},
|
| 779 |
+
{
|
| 780 |
+
accessorKey: "evaluations.ncbi_disease.normalized_score",
|
| 781 |
+
header: createHeaderCell(
|
| 782 |
+
"NCBI Disease",
|
| 783 |
+
COLUMN_TOOLTIPS.NCBI_DISEASE
|
| 784 |
+
),
|
| 785 |
+
cell: ({ row, getValue }) =>
|
| 786 |
+
createScoreCell(
|
| 787 |
+
getValue,
|
| 788 |
+
row,
|
| 789 |
+
"evaluations.ncbi_disease.normalized_score"
|
| 790 |
+
),
|
| 791 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 792 |
+
"evaluations.ncbi_disease.normalized_score"
|
| 793 |
+
],
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
accessorKey: "evaluations.chemprot.normalized_score",
|
| 797 |
+
header: createHeaderCell("ChemProt", COLUMN_TOOLTIPS.CHEMPROT),
|
| 798 |
+
cell: ({ row, getValue }) =>
|
| 799 |
+
createScoreCell(
|
| 800 |
+
getValue,
|
| 801 |
+
row,
|
| 802 |
+
"evaluations.chemprot.normalized_score"
|
| 803 |
+
),
|
| 804 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 805 |
+
"evaluations.chemprot.normalized_score"
|
| 806 |
+
],
|
| 807 |
+
},
|
| 808 |
+
{
|
| 809 |
+
accessorKey: "evaluations.ddi2013.normalized_score",
|
| 810 |
+
header: createHeaderCell("DDI2013", COLUMN_TOOLTIPS.DDI2013),
|
| 811 |
+
cell: ({ row, getValue }) =>
|
| 812 |
+
createScoreCell(
|
| 813 |
+
getValue,
|
| 814 |
+
row,
|
| 815 |
+
"evaluations.ddi2013.normalized_score"
|
| 816 |
+
),
|
| 817 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 818 |
+
"evaluations.ddi2013.normalized_score"
|
| 819 |
+
],
|
| 820 |
+
},
|
| 821 |
+
{
|
| 822 |
+
accessorKey: "evaluations.hoc.normalized_score",
|
| 823 |
+
header: createHeaderCell("HoC", COLUMN_TOOLTIPS.HOC),
|
| 824 |
+
cell: ({ row, getValue }) =>
|
| 825 |
+
createScoreCell(
|
| 826 |
+
getValue,
|
| 827 |
+
row,
|
| 828 |
+
"evaluations.hoc.normalized_score"
|
| 829 |
+
),
|
| 830 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 831 |
+
"evaluations.hoc.normalized_score"
|
| 832 |
+
],
|
| 833 |
+
},
|
| 834 |
+
{
|
| 835 |
+
accessorKey: "evaluations.litcovid.normalized_score",
|
| 836 |
+
header: createHeaderCell("LitCovid", COLUMN_TOOLTIPS.LITCOVID),
|
| 837 |
+
cell: ({ row, getValue }) =>
|
| 838 |
+
createScoreCell(
|
| 839 |
+
getValue,
|
| 840 |
+
row,
|
| 841 |
+
"evaluations.litcovid.normalized_score"
|
| 842 |
+
),
|
| 843 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 844 |
+
"evaluations.litcovid.normalized_score"
|
| 845 |
+
],
|
| 846 |
+
},
|
| 847 |
+
{
|
| 848 |
+
accessorKey: "evaluations.medqa.normalized_score",
|
| 849 |
+
header: createHeaderCell("MedQA (5-Option)", COLUMN_TOOLTIPS.MEDQA),
|
| 850 |
+
cell: ({ row, getValue }) =>
|
| 851 |
+
createScoreCell(
|
| 852 |
+
getValue,
|
| 853 |
+
row,
|
| 854 |
+
"evaluations.medqa.normalized_score"
|
| 855 |
+
),
|
| 856 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 857 |
+
"evaluations.medqa.normalized_score"
|
| 858 |
+
],
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
accessorKey: "evaluations.pubmedqa.normalized_score",
|
| 862 |
+
header: createHeaderCell("PubMedQA", COLUMN_TOOLTIPS.PUBMEDQA),
|
| 863 |
+
cell: ({ row, getValue }) =>
|
| 864 |
+
createScoreCell(
|
| 865 |
+
getValue,
|
| 866 |
+
row,
|
| 867 |
+
"evaluations.pubmedqa.normalized_score"
|
| 868 |
+
),
|
| 869 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 870 |
+
"evaluations.pubmedqa.normalized_score"
|
| 871 |
+
],
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
accessorKey: "evaluations.pubmed.normalized_score",
|
| 875 |
+
header: createHeaderCell("PubMed", COLUMN_TOOLTIPS.PUBMED),
|
| 876 |
+
cell: ({ row, getValue }) =>
|
| 877 |
+
createScoreCell(
|
| 878 |
+
getValue,
|
| 879 |
+
row,
|
| 880 |
+
"evaluations.pubmed.normalized_score"
|
| 881 |
+
),
|
| 882 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 883 |
+
"evaluations.pubmed.normalized_score"
|
| 884 |
+
],
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
accessorKey: "evaluations.ms2.normalized_score",
|
| 888 |
+
header: createHeaderCell("MS^2", COLUMN_TOOLTIPS.MS2),
|
| 889 |
+
cell: ({ row, getValue }) =>
|
| 890 |
+
createScoreCell(
|
| 891 |
+
getValue,
|
| 892 |
+
row,
|
| 893 |
+
"evaluations.ms2.normalized_score"
|
| 894 |
+
),
|
| 895 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 896 |
+
"evaluations.ms2.normalized_score"
|
| 897 |
+
],
|
| 898 |
+
},
|
| 899 |
+
{
|
| 900 |
+
accessorKey: "evaluations.cochrane_pls.normalized_score",
|
| 901 |
+
header: createHeaderCell(
|
| 902 |
+
"Cochrane PLS",
|
| 903 |
+
COLUMN_TOOLTIPS.COCHRANE_PLS
|
| 904 |
+
),
|
| 905 |
+
cell: ({ row, getValue }) =>
|
| 906 |
+
createScoreCell(
|
| 907 |
+
getValue,
|
| 908 |
+
row,
|
| 909 |
+
"evaluations.cochrane_pls.normalized_score"
|
| 910 |
+
),
|
| 911 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 912 |
+
"evaluations.cochrane_pls.normalized_score"
|
| 913 |
+
],
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
accessorKey: "evaluations.plos.normalized_score",
|
| 917 |
+
header: createHeaderCell("PLOS", COLUMN_TOOLTIPS.PLOS),
|
| 918 |
+
cell: ({ row, getValue }) =>
|
| 919 |
+
createScoreCell(
|
| 920 |
+
getValue,
|
| 921 |
+
row,
|
| 922 |
+
"evaluations.plos.normalized_score"
|
| 923 |
+
),
|
| 924 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 925 |
+
"evaluations.plos.normalized_score"
|
| 926 |
+
],
|
| 927 |
+
},
|
| 928 |
+
];
|
| 929 |
|
| 930 |
+
const optionalColumns = [
|
| 931 |
+
{
|
| 932 |
+
accessorKey: "model.architecture",
|
| 933 |
+
header: createHeaderCell(
|
| 934 |
+
"Architecture",
|
| 935 |
+
COLUMN_TOOLTIPS.ARCHITECTURE
|
| 936 |
+
),
|
| 937 |
+
accessorFn: (row) => row.model.architecture,
|
| 938 |
+
cell: ({ row }) => (
|
| 939 |
+
<Tooltip title={row.original.model.architecture || "-"}>
|
| 940 |
+
<span>{row.original.model.architecture || "-"}</span>
|
| 941 |
+
</Tooltip>
|
| 942 |
+
),
|
| 943 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["model.architecture"],
|
| 944 |
+
},
|
| 945 |
+
{
|
| 946 |
+
accessorKey: "model.precision",
|
| 947 |
+
header: createHeaderCell("Precision", COLUMN_TOOLTIPS.PRECISION),
|
| 948 |
+
accessorFn: (row) => row.model.precision,
|
| 949 |
+
cell: ({ row }) => (
|
| 950 |
+
<Tooltip title={row.original.model.precision || "-"}>
|
| 951 |
+
<span>{row.original.model.precision || "-"}</span>
|
| 952 |
+
</Tooltip>
|
| 953 |
+
),
|
| 954 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["model.precision"],
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
accessorKey: "metadata.params_billions",
|
| 958 |
+
header: createHeaderCell("Parameters", COLUMN_TOOLTIPS.PARAMETERS),
|
| 959 |
+
cell: ({ row }) => (
|
| 960 |
+
<Box
|
| 961 |
+
sx={{
|
| 962 |
+
display: "flex",
|
| 963 |
+
alignItems: "center",
|
| 964 |
+
justifyContent: "flex-start",
|
| 965 |
+
}}
|
| 966 |
+
>
|
| 967 |
+
<Typography variant="body2">
|
| 968 |
+
{row.original.metadata.params_billions}
|
| 969 |
+
<span style={{ opacity: 0.6 }}>B</span>
|
| 970 |
+
</Typography>
|
| 971 |
+
</Box>
|
| 972 |
+
),
|
| 973 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 974 |
+
"metadata.params_billions"
|
| 975 |
+
],
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
accessorKey: "metadata.hub_license",
|
| 979 |
+
header: createHeaderCell("License", COLUMN_TOOLTIPS.LICENSE),
|
| 980 |
+
cell: ({ row }) => (
|
| 981 |
+
<Tooltip title={row.original.metadata.hub_license || "-"}>
|
| 982 |
+
<Typography
|
| 983 |
+
variant="body2"
|
| 984 |
+
sx={{
|
| 985 |
+
overflow: "hidden",
|
| 986 |
+
textOverflow: "ellipsis",
|
| 987 |
+
whiteSpace: "nowrap",
|
| 988 |
+
}}
|
| 989 |
+
>
|
| 990 |
+
{row.original.metadata.hub_license || "-"}
|
| 991 |
+
</Typography>
|
| 992 |
+
</Tooltip>
|
| 993 |
+
),
|
| 994 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["metadata.hub_license"],
|
| 995 |
+
},
|
| 996 |
+
{
|
| 997 |
+
accessorKey: "metadata.hub_hearts",
|
| 998 |
+
header: createHeaderCell(
|
| 999 |
+
"Hub ❤️",
|
| 1000 |
+
"Number of likes received on the Hugging Face Hub"
|
| 1001 |
+
),
|
| 1002 |
+
cell: ({ row }) => (
|
| 1003 |
+
<Typography variant="body2">
|
| 1004 |
+
{row.original.metadata.hub_hearts}
|
| 1005 |
+
</Typography>
|
| 1006 |
+
),
|
| 1007 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["metadata.hub_hearts"],
|
| 1008 |
+
},
|
| 1009 |
+
{
|
| 1010 |
+
accessorKey: "metadata.upload_date",
|
| 1011 |
+
header: createHeaderCell(
|
| 1012 |
+
"Upload Date",
|
| 1013 |
+
"Date when the model was uploaded to the Hugging Face Hub"
|
| 1014 |
+
),
|
| 1015 |
+
cell: ({ row }) => (
|
| 1016 |
+
<Tooltip title={row.original.metadata.upload_date || "-"}>
|
| 1017 |
+
<Typography
|
| 1018 |
+
variant="body2"
|
| 1019 |
+
sx={{
|
| 1020 |
+
overflow: "hidden",
|
| 1021 |
+
textOverflow: "ellipsis",
|
| 1022 |
+
whiteSpace: "nowrap",
|
| 1023 |
+
}}
|
| 1024 |
+
>
|
| 1025 |
+
{row.original.metadata.upload_date || "-"}
|
| 1026 |
+
</Typography>
|
| 1027 |
+
</Tooltip>
|
| 1028 |
+
),
|
| 1029 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["metadata.upload_date"],
|
| 1030 |
+
},
|
| 1031 |
+
{
|
| 1032 |
+
accessorKey: "metadata.submission_date",
|
| 1033 |
+
header: createHeaderCell(
|
| 1034 |
+
"Submission Date",
|
| 1035 |
+
"Date when the model was submitted to the leaderboard"
|
| 1036 |
+
),
|
| 1037 |
+
cell: ({ row }) => (
|
| 1038 |
+
<Tooltip title={row.original.metadata.submission_date || "-"}>
|
| 1039 |
+
<Typography
|
| 1040 |
+
variant="body2"
|
| 1041 |
+
sx={{
|
| 1042 |
+
overflow: "hidden",
|
| 1043 |
+
textOverflow: "ellipsis",
|
| 1044 |
+
whiteSpace: "nowrap",
|
| 1045 |
+
}}
|
| 1046 |
+
>
|
| 1047 |
+
{row.original.metadata.submission_date || "-"}
|
| 1048 |
+
</Typography>
|
| 1049 |
+
</Tooltip>
|
| 1050 |
+
),
|
| 1051 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 1052 |
+
"metadata.submission_date"
|
| 1053 |
+
],
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
accessorKey: "metadata.generation",
|
| 1057 |
+
header: createHeaderCell(
|
| 1058 |
+
"Generation",
|
| 1059 |
+
"The generation or version number of the model"
|
| 1060 |
+
),
|
| 1061 |
+
cell: ({ row }) => (
|
| 1062 |
+
<Typography variant="body2">
|
| 1063 |
+
{row.original.metadata.generation}
|
| 1064 |
+
</Typography>
|
| 1065 |
+
),
|
| 1066 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["metadata.generation"],
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
accessorKey: "metadata.base_model",
|
| 1070 |
+
header: createHeaderCell(
|
| 1071 |
+
"Base Model",
|
| 1072 |
+
"The original model this model was derived from"
|
| 1073 |
+
),
|
| 1074 |
+
cell: ({ row }) => (
|
| 1075 |
+
<Tooltip title={row.original.metadata.base_model || "-"}>
|
| 1076 |
+
<Typography
|
| 1077 |
+
variant="body2"
|
| 1078 |
+
sx={{
|
| 1079 |
+
overflow: "hidden",
|
| 1080 |
+
textOverflow: "ellipsis",
|
| 1081 |
+
whiteSpace: "nowrap",
|
| 1082 |
+
}}
|
| 1083 |
+
>
|
| 1084 |
+
{row.original.metadata.base_model || "-"}
|
| 1085 |
+
</Typography>
|
| 1086 |
+
</Tooltip>
|
| 1087 |
+
),
|
| 1088 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["metadata.base_model"],
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
accessorKey: "metadata.co2_cost",
|
| 1092 |
+
header: createHeaderCell("CO₂ Cost", COLUMN_TOOLTIPS.CO2_COST),
|
| 1093 |
+
cell: ({ row }) => (
|
| 1094 |
+
<Box
|
| 1095 |
+
sx={{
|
| 1096 |
+
display: "flex",
|
| 1097 |
+
alignItems: "center",
|
| 1098 |
+
justifyContent: "flex-start",
|
| 1099 |
+
}}
|
| 1100 |
+
>
|
| 1101 |
+
<Typography variant="body2">
|
| 1102 |
+
{row.original.metadata.co2_cost?.toFixed(2) || "0"}
|
| 1103 |
+
<span style={{ opacity: 0.6 }}> kg</span>
|
| 1104 |
+
</Typography>
|
| 1105 |
+
</Box>
|
| 1106 |
+
),
|
| 1107 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["metadata.co2_cost"],
|
| 1108 |
+
},
|
| 1109 |
+
{
|
| 1110 |
+
accessorKey: "model.has_chat_template",
|
| 1111 |
+
header: createHeaderCell(
|
| 1112 |
+
"Chat Template",
|
| 1113 |
+
"Whether this model has a chat template defined"
|
| 1114 |
+
),
|
| 1115 |
+
cell: ({ row }) => (
|
| 1116 |
+
<BooleanValue value={row.original.model.has_chat_template} />
|
| 1117 |
+
),
|
| 1118 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 1119 |
+
"model.has_chat_template"
|
| 1120 |
+
],
|
| 1121 |
+
},
|
| 1122 |
+
{
|
| 1123 |
+
accessorKey: "features.is_not_available_on_hub",
|
| 1124 |
+
header: createHeaderCell(
|
| 1125 |
+
"Hub Availability",
|
| 1126 |
+
"Whether the model is available on the Hugging Face Hub"
|
| 1127 |
+
),
|
| 1128 |
+
cell: ({ row }) => (
|
| 1129 |
+
<BooleanValue
|
| 1130 |
+
value={row.original.features.is_not_available_on_hub}
|
| 1131 |
+
/>
|
| 1132 |
+
),
|
| 1133 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 1134 |
+
"features.is_not_available_on_hub"
|
| 1135 |
+
],
|
| 1136 |
+
},
|
| 1137 |
+
{
|
| 1138 |
+
accessorKey: "features.is_highlighted_by_maintainer",
|
| 1139 |
+
header: createHeaderCell(
|
| 1140 |
+
"Official Providers",
|
| 1141 |
+
"Models that are officially provided and maintained by their original creators or organizations"
|
| 1142 |
+
),
|
| 1143 |
+
cell: ({ row }) => (
|
| 1144 |
+
<BooleanValue
|
| 1145 |
+
value={row.original.features.is_highlighted_by_maintainer}
|
| 1146 |
+
/>
|
| 1147 |
+
),
|
| 1148 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
| 1149 |
+
"features.is_highlighted_by_maintainer"
|
| 1150 |
+
],
|
| 1151 |
+
enableSorting: true,
|
| 1152 |
+
},
|
| 1153 |
+
{
|
| 1154 |
+
accessorKey: "features.is_moe",
|
| 1155 |
+
header: createHeaderCell(
|
| 1156 |
+
"Mixture of Experts",
|
| 1157 |
+
"Whether this model uses a Mixture of Experts architecture"
|
| 1158 |
+
),
|
| 1159 |
+
cell: ({ row }) => (
|
| 1160 |
+
<BooleanValue value={row.original.features.is_moe} />
|
| 1161 |
+
),
|
| 1162 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["features.is_moe"],
|
| 1163 |
+
},
|
| 1164 |
+
{
|
| 1165 |
+
accessorKey: "features.is_flagged",
|
| 1166 |
+
header: createHeaderCell(
|
| 1167 |
+
"Flag Status",
|
| 1168 |
+
"Whether this model has been flagged for any issues"
|
| 1169 |
+
),
|
| 1170 |
+
cell: ({ row }) => (
|
| 1171 |
+
<BooleanValue value={row.original.features.is_flagged} />
|
| 1172 |
+
),
|
| 1173 |
+
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["features.is_flagged"],
|
| 1174 |
+
},
|
| 1175 |
+
];
|
| 1176 |
|
| 1177 |
+
// Utiliser directement columnVisibility
|
| 1178 |
+
const finalColumns = [
|
| 1179 |
+
...baseColumns,
|
| 1180 |
+
...evaluationColumns.filter((col) => columnVisibility[col.accessorKey]),
|
| 1181 |
+
...optionalColumns
|
| 1182 |
+
.filter((col) => columnVisibility[col.accessorKey])
|
| 1183 |
+
.sort((a, b) => {
|
| 1184 |
+
// Définir l'ordre personnalisé des colonnes
|
| 1185 |
+
const order = {
|
| 1186 |
+
"model.architecture": 1,
|
| 1187 |
+
"model.precision": 2,
|
| 1188 |
+
"metadata.params_billions": 3,
|
| 1189 |
+
"metadata.hub_license": 4,
|
| 1190 |
+
"metadata.co2_cost": 5,
|
| 1191 |
+
"metadata.hub_hearts": 6,
|
| 1192 |
+
"metadata.upload_date": 7,
|
| 1193 |
+
"metadata.submission_date": 8,
|
| 1194 |
+
"metadata.generation": 9,
|
| 1195 |
+
"metadata.base_model": 10,
|
| 1196 |
+
"model.has_chat_template": 11,
|
| 1197 |
+
"features.is_not_available_on_hub": 12,
|
| 1198 |
+
"features.is_highlighted_by_maintainer": 13,
|
| 1199 |
+
"features.is_moe": 14,
|
| 1200 |
+
"features.is_flagged": 15,
|
| 1201 |
+
};
|
| 1202 |
+
return order[a.accessorKey] - order[b.accessorKey];
|
| 1203 |
+
}),
|
| 1204 |
+
];
|
| 1205 |
|
| 1206 |
+
return finalColumns;
|
| 1207 |
};
|