Spaces:
Sleeping
Sleeping
File size: 1,443 Bytes
6590ce7 4745afa 6590ce7 db7b04a 00d949a e24712a 944dab1 7863bc5 ced9eab 944dab1 1a47aa3 66bc972 944dab1 66bc972 944dab1 4745afa edcea04 313686f edcea04 313686f edcea04 00d949a 2a0fb5d 944dab1 4745afa 944dab1 e24712a 944dab1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
import sys, os
# ---- Add YOLOv12 code to Python path ----
fork_ultra_path = os.path.join(os.path.dirname(__file__), "yolov12-main", "yolov12-main")
sys.path.insert(0, fork_ultra_path)
# ---- Import YOLO ----
from ultralytics import YOLO
# ---- Load trained model ----
model_path = os.path.join(os.path.dirname(__file__), "best.pt")
model = YOLO(model_path)
# ---- Detection function ----
def detect_objects(image):
# Convert PIL to RGB NumPy array (YOLO expects RGB)
img = np.array(image.convert("RGB"))
# Run prediction with same settings used during training
results = model.predict(
source=img,
imgsz=640, # same resolution as training
conf=0.25, # lower confidence threshold to catch subtle detections
iou=0.45, # standard non-max suppression
verbose=False
)
# Visualize results
annotated = results[0].plot()
return Image.fromarray(annotated)
# ---- Gradio Interface ----
demo = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="pil", label="Upload an Ear Image"),
outputs=gr.Image(type="pil", label="Detection Result"),
title="Ear Condition Detection",
description="Upload an ear image to detect possible conditions using the trained YOLOv12 model."
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
|