Spaces:
Runtime error
Runtime error
Added streaming support
Browse files
app.py
CHANGED
|
@@ -1,63 +1,100 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
import spaces
|
| 4 |
-
from transformers import GemmaTokenizer,
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Set an environment variable
|
| 7 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# Load the tokenizer and model
|
| 10 |
tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-7b-it")
|
| 11 |
model = AutoModelForCausalLM.from_pretrained("google/codegemma-7b-it", device_map="auto")
|
| 12 |
|
|
|
|
| 13 |
@spaces.GPU(duration=120)
|
| 14 |
-
def codegemma(message: str,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
"""
|
| 16 |
-
Generate a response using the CodeGemma model.
|
| 17 |
-
|
| 18 |
Args:
|
| 19 |
message (str): The input message.
|
| 20 |
history (list): The conversation history used by ChatInterface.
|
| 21 |
temperature (float): The temperature for generating the response.
|
| 22 |
max_new_tokens (int): The maximum number of new tokens to generate.
|
| 23 |
-
|
| 24 |
Returns:
|
| 25 |
str: The generated response.
|
| 26 |
"""
|
| 27 |
-
input_ids = tokenizer(message, return_tensors="pt").to(
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
max_new_tokens=max_new_tokens,
|
|
|
|
|
|
|
| 32 |
)
|
| 33 |
-
response = tokenizer.decode(outputs[0])
|
| 34 |
-
return response
|
| 35 |
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
"""
|
| 43 |
-
|
| 44 |
|
| 45 |
# Gradio block
|
| 46 |
-
chatbot=gr.Chatbot(placeholder=
|
|
|
|
| 47 |
with gr.Blocks(fill_height=True) as demo:
|
| 48 |
-
|
| 49 |
-
gr.
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
)
|
| 60 |
|
| 61 |
-
|
| 62 |
if __name__ == "__main__":
|
| 63 |
-
demo.launch(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
import spaces
|
| 4 |
+
from transformers import AutoModelForCausalLM, GemmaTokenizer, TextIteratorStreamer
|
| 5 |
+
from threading import Thread
|
| 6 |
+
|
| 7 |
|
| 8 |
# Set an environment variable
|
| 9 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 10 |
|
| 11 |
+
DESCRIPTION = """\
|
| 12 |
+
<h1><center> CodeGemma </center></h1>
|
| 13 |
+
This Space demonstrates model [CodeGemma-7b-it](https://huggingface.co/google/codegemma-7b-it) by Google. CodeGemma is a collection of lightweight open code models built on top of Gemma. Feel free to play with it, or duplicate to run privately!
|
| 14 |
+
🔎 For more details about the CodeGemma release and how to use the models with `transformers`, take a look [at our blog post](https://huggingface.co/blog/codegemma).
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
PLACEHOLDER = """
|
| 18 |
+
<div style="opacity: 0.65;">
|
| 19 |
+
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/7dd7659cff2eab51f0f5336f378edfca01dd16fa/gemma_lockup_vertical_full-color_rgb.png" style="width:30%;">
|
| 20 |
+
<br><b>CodeGemma-7B-IT Chatbot</b>
|
| 21 |
+
</div>
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
|
| 25 |
# Load the tokenizer and model
|
| 26 |
tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-7b-it")
|
| 27 |
model = AutoModelForCausalLM.from_pretrained("google/codegemma-7b-it", device_map="auto")
|
| 28 |
|
| 29 |
+
|
| 30 |
@spaces.GPU(duration=120)
|
| 31 |
+
def codegemma(message: str,
|
| 32 |
+
history: list,
|
| 33 |
+
temperature: float,
|
| 34 |
+
max_new_tokens: int
|
| 35 |
+
) -> str:
|
| 36 |
"""
|
| 37 |
+
Generate a streaming response using the CodeGemma model.
|
|
|
|
| 38 |
Args:
|
| 39 |
message (str): The input message.
|
| 40 |
history (list): The conversation history used by ChatInterface.
|
| 41 |
temperature (float): The temperature for generating the response.
|
| 42 |
max_new_tokens (int): The maximum number of new tokens to generate.
|
|
|
|
| 43 |
Returns:
|
| 44 |
str: The generated response.
|
| 45 |
"""
|
| 46 |
+
input_ids = tokenizer.encode(message, return_tensors="pt").to(model.device)
|
| 47 |
+
|
| 48 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 49 |
+
|
| 50 |
+
generate_kwargs = dict(
|
| 51 |
+
input_ids= input_ids,
|
| 52 |
+
streamer=streamer,
|
| 53 |
max_new_tokens=max_new_tokens,
|
| 54 |
+
do_sample=True,
|
| 55 |
+
temperature=temperature,
|
| 56 |
)
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 59 |
+
t.start()
|
| 60 |
|
| 61 |
+
outputs = []
|
| 62 |
+
for text in streamer:
|
| 63 |
+
outputs.append(text)
|
| 64 |
+
yield "".join(outputs)
|
| 65 |
+
|
|
|
|
|
|
|
| 66 |
|
| 67 |
# Gradio block
|
| 68 |
+
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,height=500)
|
| 69 |
+
|
| 70 |
with gr.Blocks(fill_height=True) as demo:
|
| 71 |
+
|
| 72 |
+
gr.Markdown(DESCRIPTION)
|
| 73 |
+
|
| 74 |
+
gr.ChatInterface(
|
| 75 |
+
fn=codegemma,
|
| 76 |
+
chatbot=chatbot,
|
| 77 |
+
fill_height=True,
|
| 78 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
| 79 |
+
additional_inputs=[
|
| 80 |
+
gr.Slider(minimum=0,
|
| 81 |
+
maximum=1,
|
| 82 |
+
step=0.1,
|
| 83 |
+
value=0.95,
|
| 84 |
+
label="Temperature",
|
| 85 |
+
render=False),
|
| 86 |
+
gr.Slider(minimum=128,
|
| 87 |
+
maximum=4096,
|
| 88 |
+
step=1,
|
| 89 |
+
value=512,
|
| 90 |
+
label="Max new tokens",
|
| 91 |
+
render=False ),
|
| 92 |
+
],
|
| 93 |
+
examples=[
|
| 94 |
+
["Write a Python function to calculate the nth fibonacci number."]
|
| 95 |
+
],
|
| 96 |
+
cache_examples=False,
|
| 97 |
)
|
| 98 |
|
|
|
|
| 99 |
if __name__ == "__main__":
|
| 100 |
+
demo.launch()
|