Spaces:
Runtime error
Runtime error
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torchvision import models | |
| class InceptionV3(nn.Module): | |
| """Pretrained InceptionV3 network returning feature maps""" | |
| # Index of default block of inception to return, | |
| # corresponds to output of final average pooling | |
| DEFAULT_BLOCK_INDEX = 3 | |
| # Maps feature dimensionality to their output blocks indices | |
| BLOCK_INDEX_BY_DIM = { | |
| 64: 0, # First max pooling features | |
| 192: 1, # Second max pooling featurs | |
| 768: 2, # Pre-aux classifier features | |
| 2048: 3 # Final average pooling features | |
| } | |
| def __init__(self, | |
| output_blocks=[DEFAULT_BLOCK_INDEX], | |
| resize_input=True, | |
| normalize_input=True, | |
| requires_grad=False): | |
| """Build pretrained InceptionV3 | |
| Parameters | |
| ---------- | |
| output_blocks : list of int | |
| Indices of blocks to return features of. Possible values are: | |
| - 0: corresponds to output of first max pooling | |
| - 1: corresponds to output of second max pooling | |
| - 2: corresponds to output which is fed to aux classifier | |
| - 3: corresponds to output of final average pooling | |
| resize_input : bool | |
| If true, bilinearly resizes input to width and height 299 before | |
| feeding input to model. As the network without fully connected | |
| layers is fully convolutional, it should be able to handle inputs | |
| of arbitrary size, so resizing might not be strictly needed | |
| normalize_input : bool | |
| If true, scales the input from range (0, 1) to the range the | |
| pretrained Inception network expects, namely (-1, 1) | |
| requires_grad : bool | |
| If true, parameters of the model require gradient. Possibly useful | |
| for finetuning the network | |
| """ | |
| super(InceptionV3, self).__init__() | |
| self.resize_input = resize_input | |
| self.normalize_input = normalize_input | |
| self.output_blocks = sorted(output_blocks) | |
| self.last_needed_block = max(output_blocks) | |
| assert self.last_needed_block <= 3, \ | |
| 'Last possible output block index is 3' | |
| self.blocks = nn.ModuleList() | |
| inception = models.inception_v3(pretrained=True) | |
| # Block 0: input to maxpool1 | |
| block0 = [ | |
| inception.Conv2d_1a_3x3, | |
| inception.Conv2d_2a_3x3, | |
| inception.Conv2d_2b_3x3, | |
| nn.MaxPool2d(kernel_size=3, stride=2) | |
| ] | |
| self.blocks.append(nn.Sequential(*block0)) | |
| # Block 1: maxpool1 to maxpool2 | |
| if self.last_needed_block >= 1: | |
| block1 = [ | |
| inception.Conv2d_3b_1x1, | |
| inception.Conv2d_4a_3x3, | |
| nn.MaxPool2d(kernel_size=3, stride=2) | |
| ] | |
| self.blocks.append(nn.Sequential(*block1)) | |
| # Block 2: maxpool2 to aux classifier | |
| if self.last_needed_block >= 2: | |
| block2 = [ | |
| inception.Mixed_5b, | |
| inception.Mixed_5c, | |
| inception.Mixed_5d, | |
| inception.Mixed_6a, | |
| inception.Mixed_6b, | |
| inception.Mixed_6c, | |
| inception.Mixed_6d, | |
| inception.Mixed_6e, | |
| ] | |
| self.blocks.append(nn.Sequential(*block2)) | |
| # Block 3: aux classifier to final avgpool | |
| if self.last_needed_block >= 3: | |
| block3 = [ | |
| inception.Mixed_7a, | |
| inception.Mixed_7b, | |
| inception.Mixed_7c, | |
| nn.AdaptiveAvgPool2d(output_size=(1, 1)) | |
| ] | |
| self.blocks.append(nn.Sequential(*block3)) | |
| for param in self.parameters(): | |
| param.requires_grad = requires_grad | |
| def forward(self, inp): | |
| """Get Inception feature maps | |
| Parameters | |
| ---------- | |
| inp : torch.autograd.Variable | |
| Input tensor of shape Bx3xHxW. Values are expected to be in | |
| range (0.0, 1.0) | |
| Returns | |
| ------- | |
| List of torch.autograd.Variable, corresponding to the selected output | |
| block, sorted ascending by index | |
| """ | |
| outp = [] | |
| x = inp | |
| if self.resize_input: | |
| x = F.interpolate(x, | |
| size=(299, 299), | |
| mode='bilinear', | |
| align_corners=False) | |
| if self.normalize_input: | |
| x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1) | |
| for idx, block in enumerate(self.blocks): | |
| x = block(x) | |
| if idx in self.output_blocks: | |
| outp.append(x) | |
| if idx == self.last_needed_block: | |
| break | |
| return outp | |