Spaces:
Runtime error
Runtime error
| """Calculates the Frechet Inception Distance (FID) to evalulate GANs | |
| The FID metric calculates the distance between two distributions of images. | |
| Typically, we have summary statistics (mean & covariance matrix) of one | |
| of these distributions, while the 2nd distribution is given by a GAN. | |
| When run as a stand-alone program, it compares the distribution of | |
| images that are stored as PNG/JPEG at a specified location with a | |
| distribution given by summary statistics (in pickle format). | |
| The FID is calculated by assuming that X_1 and X_2 are the activations of | |
| the pool_3 layer of the inception net for generated samples and real world | |
| samples respectively. | |
| See --help to see further details. | |
| Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead | |
| of Tensorflow | |
| Copyright 2018 Institute of Bioinformatics, JKU Linz | |
| Licensed under the Apache License, Version 2.0 (the "License"); | |
| you may not use this file except in compliance with the License. | |
| You may obtain a copy of the License at | |
| http://www.apache.org/licenses/LICENSE-2.0 | |
| Unless required by applicable law or agreed to in writing, software | |
| distributed under the License is distributed on an "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| See the License for the specific language governing permissions and | |
| limitations under the License. | |
| """ | |
| import ipdb | |
| import os | |
| from pathlib import Path | |
| from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser | |
| import pyiqa | |
| from pdb import set_trace as st | |
| import json | |
| import numpy as np | |
| import torch | |
| import torchvision.transforms as TF | |
| from PIL import Image | |
| from scipy import linalg | |
| from torch.nn.functional import adaptive_avg_pool2d | |
| import cv2 | |
| try: | |
| from tqdm import tqdm | |
| except ImportError: | |
| # If tqdm is not available, provide a mock version of it | |
| def tqdm(x): | |
| return x | |
| from pytorch_fid.inception import InceptionV3 | |
| parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) | |
| parser.add_argument('--batch-size', type=int, default=100, | |
| help='Batch size to use') | |
| parser.add_argument('--reso', type=int, default=128, | |
| help='Batch size to use') | |
| parser.add_argument('--num-workers', type=int, default=8, | |
| help=('Number of processes to use for data loading. ' | |
| 'Defaults to `min(8, num_cpus)`')) | |
| parser.add_argument('--device', type=str, default=None, | |
| help='Device to use. Like cuda, cuda:0 or cpu') | |
| parser.add_argument('--dataset', type=str, default='omni', | |
| help='Device to use. Like cuda, cuda:0 or cpu') | |
| parser.add_argument('--dims', type=int, default=2048, | |
| choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), | |
| help=('Dimensionality of Inception features to use. ' | |
| 'By default, uses pool3 features')) | |
| parser.add_argument('--save-stats', action='store_true', | |
| help=('Generate an npz archive from a directory of samples. ' | |
| 'The first path is used as input and the second as output.')) | |
| parser.add_argument('path', type=str, nargs=2, | |
| help=('Paths to the generated images or ' | |
| 'to .npz statistic files')) | |
| IMAGE_EXTENSIONS = {'bmp', 'jpg', 'jpeg', 'pgm', 'png', 'ppm', | |
| 'tif', 'tiff', 'webp'} | |
| class ImagePathDataset(torch.utils.data.Dataset): | |
| def __init__(self, files, reso,transforms=None): | |
| self.files = files | |
| self.transforms = transforms | |
| self.reso=reso | |
| def __len__(self): | |
| return len(self.files) | |
| def __getitem__(self, i): | |
| path = self.files[i] | |
| #ipdb.set_trace() | |
| try: | |
| img=cv2.imread(path) | |
| #if img.mean(-1)>254.9: | |
| #img[np.where(img.mean(-1)>254.9)]=0 | |
| img=cv2.resize(img,(self.reso,self.reso),interpolation=cv2.INTER_CUBIC) | |
| img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) | |
| except: | |
| img=cv2.imread(self.files[0]) | |
| #if img.mean(-1)>254.9: | |
| #img[np.where(img.mean(-1)>254.9)]=0 | |
| img=cv2.resize(img,(self.reso,self.reso),interpolation=cv2.INTER_CUBIC) | |
| img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) | |
| print(path) | |
| #img = Image.open(path).convert('RGB') | |
| if self.transforms is not None: | |
| img = self.transforms(img) | |
| #ipdb.set_trace() | |
| return img | |
| def get_activations(files, model, batch_size=50, dims=2048, device='cpu', | |
| num_workers=16,reso=128): | |
| """Calculates the activations of the pool_3 layer for all images. | |
| Params: | |
| -- files : List of image files paths | |
| -- model : Instance of inception model | |
| -- batch_size : Batch size of images for the model to process at once. | |
| Make sure that the number of samples is a multiple of | |
| the batch size, otherwise some samples are ignored. This | |
| behavior is retained to match the original FID score | |
| implementation. | |
| -- dims : Dimensionality of features returned by Inception | |
| -- device : Device to run calculations | |
| -- num_workers : Number of parallel dataloader workers | |
| Returns: | |
| -- A numpy array of dimension (num images, dims) that contains the | |
| activations of the given tensor when feeding inception with the | |
| query tensor. | |
| """ | |
| model.eval() | |
| if batch_size > len(files): | |
| print(('Warning: batch size is bigger than the data size. ' | |
| 'Setting batch size to data size')) | |
| batch_size = len(files) | |
| dataset = ImagePathDataset(files, reso,transforms=TF.ToTensor()) | |
| dataloader = torch.utils.data.DataLoader(dataset, | |
| batch_size=batch_size, | |
| shuffle=False, | |
| drop_last=False, | |
| num_workers=num_workers) | |
| pred_arr = np.empty((len(files), dims)) | |
| start_idx = 0 | |
| for batch in tqdm(dataloader): | |
| batch = batch.to(device) | |
| #ipdb.set_trace() | |
| with torch.no_grad(): | |
| pred = model(batch)[0] | |
| # If model output is not scalar, apply global spatial average pooling. | |
| # This happens if you choose a dimensionality not equal 2048. | |
| if pred.size(2) != 1 or pred.size(3) != 1: | |
| pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) | |
| #ipdb.set_trace() | |
| pred = pred.squeeze(3).squeeze(2).cpu().numpy() | |
| pred_arr[start_idx:start_idx + pred.shape[0]] = pred | |
| start_idx = start_idx + pred.shape[0] | |
| return pred_arr | |
| def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
| """Numpy implementation of the Frechet Distance. | |
| The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
| and X_2 ~ N(mu_2, C_2) is | |
| d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
| Stable version by Dougal J. Sutherland. | |
| Params: | |
| -- mu1 : Numpy array containing the activations of a layer of the | |
| inception net (like returned by the function 'get_predictions') | |
| for generated samples. | |
| -- mu2 : The sample mean over activations, precalculated on an | |
| representative data set. | |
| -- sigma1: The covariance matrix over activations for generated samples. | |
| -- sigma2: The covariance matrix over activations, precalculated on an | |
| representative data set. | |
| Returns: | |
| -- : The Frechet Distance. | |
| """ | |
| #ipdb.set_trace() | |
| mu1 = np.atleast_1d(mu1) | |
| mu2 = np.atleast_1d(mu2) | |
| sigma1 = np.atleast_2d(sigma1) | |
| sigma2 = np.atleast_2d(sigma2) | |
| assert mu1.shape == mu2.shape, \ | |
| 'Training and test mean vectors have different lengths' | |
| assert sigma1.shape == sigma2.shape, \ | |
| 'Training and test covariances have different dimensions' | |
| diff = mu1 - mu2 | |
| # Product might be almost singular | |
| covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
| if not np.isfinite(covmean).all(): | |
| msg = ('fid calculation produces singular product; ' | |
| 'adding %s to diagonal of cov estimates') % eps | |
| print(msg) | |
| offset = np.eye(sigma1.shape[0]) * eps | |
| covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
| # Numerical error might give slight imaginary component | |
| if np.iscomplexobj(covmean): | |
| if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
| m = np.max(np.abs(covmean.imag)) | |
| raise ValueError('Imaginary component {}'.format(m)) | |
| covmean = covmean.real | |
| tr_covmean = np.trace(covmean) | |
| return (diff.dot(diff) + np.trace(sigma1) | |
| + np.trace(sigma2) - 2 * tr_covmean) | |
| def calculate_activation_statistics(files, model, batch_size=50, dims=2048, | |
| device='cpu', num_workers=1,reso=128): | |
| """Calculation of the statistics used by the FID. | |
| Params: | |
| -- files : List of image files paths | |
| -- model : Instance of inception model | |
| -- batch_size : The images numpy array is split into batches with | |
| batch size batch_size. A reasonable batch size | |
| depends on the hardware. | |
| -- dims : Dimensionality of features returned by Inception | |
| -- device : Device to run calculations | |
| -- num_workers : Number of parallel dataloader workers | |
| Returns: | |
| -- mu : The mean over samples of the activations of the pool_3 layer of | |
| the inception model. | |
| -- sigma : The covariance matrix of the activations of the pool_3 layer of | |
| the inception model. | |
| """ | |
| act = get_activations(files, model, batch_size, dims, device, num_workers,reso=reso) | |
| mu = np.mean(act, axis=0) | |
| sigma = np.cov(act, rowvar=False) | |
| return mu, sigma | |
| def compute_statistics_of_path(path, model, batch_size, dims, device, | |
| num_workers=1,reso=512,dataset='gso'): | |
| basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid/gso_gt" | |
| # basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid-withtop/gso_gt" | |
| # basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-free3d/metrics/fid-withtop/gso_gt" | |
| # basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-/metrics/fid-withtop/gso_gt" | |
| os.makedirs(os.path.join(basepath), exist_ok=True) | |
| objv_dataset = '/mnt/sfs-common/yslan/Dataset/Obajverse/chunk-jpeg-normal/bs_16_fixsave3/170K/512/' | |
| dataset_json = os.path.join(objv_dataset, 'dataset.json') | |
| with open(dataset_json, 'r') as f: | |
| dataset_json = json.load(f) | |
| # all_objs = dataset_json['Animals'][::3][:6250] | |
| all_objs = dataset_json['Animals'][::3][1100:2200] | |
| all_objs = all_objs[:600][:] | |
| # all_objs = all_objs[100:600] | |
| # all_objs = all_objs[:500] | |
| # if 'shapenet' in dataset: | |
| # if 'shapenet' in dataset: | |
| try: | |
| try: | |
| m=np.load(os.path.join(basepath,path.split('/')[-1]+str(reso)+'mean.npy')) | |
| s=np.load(os.path.join(basepath,path.split('/')[-1]+str(reso)+'std.npy')) | |
| print('loading_dataset',dataset) | |
| except: | |
| files=[] | |
| # ! load instances for I23D inference | |
| # for obj_folder in tqdm(sorted(os.listdir(path))): | |
| # for idx in range(0,25): | |
| # img_name = os.path.join(path, obj_folder, 'rgba', f'{idx:03}.png') | |
| # files.append(img_name) | |
| # ! free3d rendering | |
| # for obj_folder in tqdm(sorted(os.listdir(path))): | |
| # for idx in range(0,25): | |
| # # img_name = os.path.join(path, obj_folder, 'rgba', f'{idx:03}.png') | |
| # img_name = os.path.join(path, obj_folder, 'render_mvs_25', 'model', f'{idx:03}.png') | |
| # files.append(img_name) | |
| # ! objv loading | |
| for obj_folder in tqdm(all_objs): | |
| obj_folder = obj_folder[:-2] # to load 3 chunks | |
| for batch in range(1,4): | |
| for idx in range(8): | |
| files.append(os.path.join(path, obj_folder, str(batch), f'{idx}.jpg')) | |
| # for name in os.listdir(path): | |
| # #ipdb.set_trace() | |
| # # if name not in false1: #and name not in false2 and name not in false3: | |
| # if name in false1: #and name not in false2 and name not in false3: | |
| # img=os.path.join(path,name,'rgb') | |
| # #ipdb.set_trace() | |
| # files = files+sorted([os.path.join(img, idd) for idd in os.listdir(img) if idd.endswith('.png')]) | |
| if len(files) > 50000: | |
| files = files[:50000] | |
| break | |
| #files=files[:5] | |
| m, s = calculate_activation_statistics(files, model, batch_size, | |
| dims, device, num_workers,reso=reso) | |
| path = Path(path) | |
| # ipdb.set_trace() | |
| np.save(os.path.join(basepath,path.name+str(reso)+'mean'), m) | |
| np.save(os.path.join(basepath,path.name+str(reso)+'std'), s) | |
| except Exception as e: | |
| print(f'{dataset} failed, ', e) | |
| return m, s | |
| def compute_statistics_of_path_new(path, model, batch_size, dims, device, | |
| num_workers=1,reso=128,dataset='omni'): | |
| # basepath='/mnt/lustre/yslan/logs/nips23/LSGM/cldm/cmetric/shapenet-outs/fid'+str(reso)+'test'+dataset | |
| # basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir/metrics/fid/'+str(reso)+dataset | |
| # basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-free3d/metrics/fid/'+str(reso)+dataset | |
| # basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid/'+str(reso)+dataset | |
| # basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid-subset/'+str(reso)+dataset | |
| basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid/'+str(reso)+dataset | |
| # basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid-withtop/'+str(reso)+dataset | |
| # basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-free3d/metrics/fid/'+str(reso)+dataset | |
| objv_dataset = '/mnt/sfs-common/yslan/Dataset/Obajverse/chunk-jpeg-normal/bs_16_fixsave3/170K/512/' | |
| dataset_json = os.path.join(objv_dataset, 'dataset.json') | |
| with open(dataset_json, 'r') as f: | |
| dataset_json = json.load(f) | |
| # all_objs = dataset_json['Animals'][::3][:6250] | |
| all_objs = dataset_json['Animals'][::3][1100:2200] | |
| all_objs = all_objs[:600] | |
| os.makedirs(os.path.join(basepath), exist_ok=True) | |
| sample_name=path.split('/')[-1] | |
| try: | |
| try: | |
| # ipdb.set_trace() | |
| m=np.load(os.path.join(basepath,sample_name+str(reso)+'mean.npy')) | |
| s=np.load(os.path.join(basepath,sample_name+str(reso)+'std.npy')) | |
| print('loading_sample') | |
| except: | |
| files=[] | |
| # for name in os.listdir(path): | |
| # img=os.path.join(path,name) | |
| # files.append(img) # ! directly append | |
| # for loading gso-like folder | |
| # st() | |
| # for obj_folder in sorted(os.listdir(path)): | |
| # if obj_folder == 'runs': | |
| # continue | |
| # if not os.path.isdir(os.path.join(path, obj_folder)): | |
| # continue | |
| # for idx in [0]: | |
| # for i in range(24): | |
| # if 'GA' in path: | |
| # img=os.path.join(path,obj_folder, str(idx),f'sample-0-{i}.jpg') | |
| # else: | |
| # img=os.path.join(path,obj_folder, str(idx),f'{i}.jpg') | |
| # # ipdb.set_trace() | |
| # files.append(img) | |
| for obj_folder in tqdm(all_objs): | |
| obj_folder = '/'.join(obj_folder.split('/')[1:]) | |
| for idx in range(24): | |
| # files.append(os.path.join(path, obj_folder, f'{idx}.jpg')) | |
| if 'Lara' in path: | |
| files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0.jpg', f'{idx}.jpg')) | |
| elif 'GA' in path: | |
| files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0', f'sample-0-{idx}.jpg')) | |
| elif 'LRM' in path: | |
| files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0', f'{idx}.jpg')) | |
| else: | |
| files.append(os.path.join(path, obj_folder, '0', f'{idx}.jpg')) | |
| files=files[:50000] | |
| m, s = calculate_activation_statistics(files, model, batch_size, | |
| dims, device, num_workers,reso=reso) | |
| path = Path(path) | |
| np.save(os.path.join(basepath,sample_name+str(reso)+'mean'), m) | |
| np.save(os.path.join(basepath,sample_name+str(reso)+'std'), s) | |
| except Exception as e: | |
| print('error sample image', e) | |
| #ipdb.set_trace() | |
| return m, s | |
| def calculate_fid_given_paths(paths, batch_size, device, dims, num_workers=1,reso=128,dataset='omni'): | |
| """Calculates the FID of two paths""" | |
| # for p in paths: | |
| # if not os.path.exists(p): | |
| # raise RuntimeError('Invalid path: %s' % p) | |
| # block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
| # model = InceptionV3([block_idx]).to(device) | |
| musiq_metric = pyiqa.create_metric('musiq') | |
| all_musiq = [] | |
| for file in tqdm(os.listdir(str(paths[1]))[:]): | |
| musiq_value = musiq_metric(os.path.join(paths[1], file)) | |
| all_musiq.append(musiq_value) | |
| musiq_value = sum(all_musiq) / len(all_musiq) | |
| # fid_metric = pyiqa.create_metric('fid') | |
| # fid_value = fid_metric(paths[0], paths[1]) | |
| # m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, # ! GT data | |
| # dims, device, num_workers,reso=reso,dataset=dataset) | |
| # # ipdb.set_trace() | |
| # m2, s2 = compute_statistics_of_path_new(paths[1], model, batch_size, # ! generated data | |
| # dims, device, num_workers,reso=reso,dataset=dataset) | |
| # fid_value = calculate_frechet_distance(m1, s1, m2, s2) | |
| # return fid_value | |
| return musiq_value | |
| def save_fid_stats(paths, batch_size, device, dims, num_workers=1): | |
| """Calculates the FID of two paths""" | |
| # if not os.path.exists(paths[0]): | |
| # raise RuntimeError('Invalid path: %s' % paths[0]) | |
| # if os.path.exists(paths[1]): | |
| # raise RuntimeError('Existing output file: %s' % paths[1]) | |
| block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
| model = InceptionV3([block_idx]).to(device) | |
| print(f"Saving statistics for {paths[0]}") | |
| m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, | |
| dims, device, num_workers) | |
| np.savez_compressed(paths[1], mu=m1, sigma=s1) | |
| def main(): | |
| args = parser.parse_args() | |
| if args.device is None: | |
| device = torch.device('cuda' if (torch.cuda.is_available()) else 'cpu') | |
| else: | |
| device = torch.device(args.device) | |
| if args.num_workers is None: | |
| try: | |
| num_cpus = len(os.sched_getaffinity(0)) | |
| except AttributeError: | |
| # os.sched_getaffinity is not available under Windows, use | |
| # os.cpu_count instead (which may not return the *available* number | |
| # of CPUs). | |
| num_cpus = os.cpu_count() | |
| num_workers = min(num_cpus, 8) if num_cpus is not None else 0 | |
| else: | |
| num_workers = args.num_workers | |
| if args.save_stats: | |
| save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers) | |
| return | |
| #ipdb.set_trace() | |
| fid_value = calculate_fid_given_paths(args.path, | |
| args.batch_size, | |
| device, | |
| args.dims, | |
| num_workers,args.reso,args.dataset) | |
| print(f'{args.dataset} FID: ', fid_value) | |
| if __name__ == '__main__': | |
| main() | |