Spaces:
Runtime error
Runtime error
| """ | |
| Train a diffusion model on images. | |
| """ | |
| # import imageio | |
| from pathlib import Path | |
| import torchvision | |
| import kornia | |
| import lz4.frame | |
| import gzip | |
| import random | |
| import json | |
| import sys | |
| import os | |
| import lmdb | |
| from tqdm import tqdm | |
| sys.path.append('.') | |
| import torch.distributed as dist | |
| import pytorch3d.ops | |
| import pickle | |
| import traceback | |
| from PIL import Image | |
| import torch as th | |
| if th.cuda.is_available(): | |
| from xformers.triton import FusedLayerNorm as LayerNorm | |
| import torch.multiprocessing as mp | |
| import lzma | |
| import webdataset as wds | |
| import numpy as np | |
| import point_cloud_utils as pcu | |
| from torch.utils.data import DataLoader, Dataset | |
| import imageio.v3 as iio | |
| import argparse | |
| import dnnlib | |
| from guided_diffusion import dist_util, logger | |
| from guided_diffusion.script_util import ( | |
| args_to_dict, | |
| add_dict_to_argparser, | |
| ) | |
| # from nsr.train_util import TrainLoop3DRec as TrainLoop | |
| from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch | |
| from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default | |
| from datasets.shapenet import load_data, load_data_for_lmdb, load_eval_data, load_memory_data | |
| from nsr.losses.builder import E3DGELossClass | |
| from datasets.eg3d_dataset import init_dataset_kwargs | |
| from nsr.volumetric_rendering.ray_sampler import RaySampler | |
| # from .lmdb_create import encode_and_compress_image | |
| def encode_and_compress_image(inp_array, is_image=False, compress=True): | |
| # Read the image using imageio | |
| # image = imageio.v3.imread(image_path) | |
| # Convert the image to bytes | |
| # with io.BytesIO() as byte_buffer: | |
| # imageio.imsave(byte_buffer, image, format="png") | |
| # image_bytes = byte_buffer.getvalue() | |
| if is_image: | |
| inp_bytes = iio.imwrite("<bytes>", inp_array, extension=".png") | |
| else: | |
| inp_bytes = inp_array.tobytes() | |
| # Compress the image data using gzip | |
| if compress: | |
| # compressed_data = gzip.compress(inp_bytes) | |
| compressed_data = lz4.frame.compress(inp_bytes) | |
| return compressed_data | |
| else: | |
| return inp_bytes | |
| from pdb import set_trace as st | |
| import bz2 | |
| # th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16 | |
| def training_loop(args): | |
| # def training_loop(args): | |
| # dist_util.setup_dist(args) | |
| # th.autograd.set_detect_anomaly(True) # type: ignore | |
| th.autograd.set_detect_anomaly(False) # type: ignore | |
| # https://blog.csdn.net/qq_41682740/article/details/126304613 | |
| SEED = args.seed | |
| # dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) | |
| # logger.log(f"{args.local_rank=} init complete, seed={SEED}") | |
| # th.cuda.set_device(args.local_rank) | |
| th.cuda.empty_cache() | |
| # * deterministic algorithms flags | |
| th.cuda.manual_seed_all(SEED) | |
| np.random.seed(SEED) | |
| random.seed(SEED) | |
| ray_sampler = RaySampler() | |
| # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) | |
| logger.configure(dir=args.logdir) | |
| logger.log("creating encoder and NSR decoder...") | |
| # device = dist_util.dev() | |
| # device = th.device("cuda", args.local_rank) | |
| # shared eg3d opts | |
| opts = eg3d_options_default() | |
| if args.sr_training: | |
| args.sr_kwargs = dnnlib.EasyDict( | |
| channel_base=opts.cbase, | |
| channel_max=opts.cmax, | |
| fused_modconv_default='inference_only', | |
| use_noise=True | |
| ) # ! close noise injection? since noise_mode='none' in eg3d | |
| if args.objv_dataset: | |
| from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_data_for_lmdb | |
| else: # shapenet | |
| from datasets.shapenet import load_data, load_eval_data, load_memory_data, load_data_for_lmdb | |
| # auto_encoder = create_3DAE_model( | |
| # **args_to_dict(args, | |
| # encoder_and_nsr_defaults().keys())) | |
| # auto_encoder.to(device) | |
| # auto_encoder.train() | |
| logger.log("creating data loader...") | |
| # data = load_data( | |
| # st() | |
| # if args.overfitting: | |
| # data = load_memory_data( | |
| # file_path=args.data_dir, | |
| # batch_size=args.batch_size, | |
| # reso=args.image_size, | |
| # reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| # num_workers=args.num_workers, | |
| # # load_depth=args.depth_lambda > 0 | |
| # load_depth=True # for evaluation | |
| # ) | |
| # else: | |
| if args.cfg in ('afhq', 'ffhq'): | |
| # ! load data | |
| logger.log("creating eg3d data loader...") | |
| training_set_kwargs, dataset_name = init_dataset_kwargs( | |
| data=args.data_dir, | |
| class_name='datasets.eg3d_dataset.ImageFolderDatasetLMDB', | |
| reso_gt=args.image_size) # only load pose here | |
| # if args.cond and not training_set_kwargs.use_labels: | |
| # raise Exception('check here') | |
| # training_set_kwargs.use_labels = args.cond | |
| training_set_kwargs.use_labels = True | |
| training_set_kwargs.xflip = False | |
| training_set_kwargs.random_seed = SEED | |
| # training_set_kwargs.max_size = args.dataset_size | |
| # desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}' | |
| # * construct ffhq/afhq dataset | |
| training_set = dnnlib.util.construct_class_by_name( | |
| **training_set_kwargs) # subclass of training.dataset.Dataset | |
| dataset_size = len(training_set) | |
| # training_set_sampler = InfiniteSampler( | |
| # dataset=training_set, | |
| # rank=dist_util.get_rank(), | |
| # num_replicas=dist_util.get_world_size(), | |
| # seed=SEED) | |
| data = DataLoader( | |
| training_set, | |
| shuffle=False, | |
| batch_size=1, | |
| num_workers=16, | |
| drop_last=False, | |
| # prefetch_factor=2, | |
| pin_memory=True, | |
| persistent_workers=True, | |
| ) | |
| else: | |
| # data, dataset_name, dataset_size, dataset = load_data_for_lmdb( | |
| data, dataset_name, dataset_size = load_data_for_lmdb( | |
| file_path=args.data_dir, | |
| batch_size=args.batch_size, | |
| reso=args.image_size, | |
| reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| num_workers=args.num_workers, | |
| load_depth=True, | |
| preprocess=None, | |
| dataset_size=args.dataset_size, | |
| trainer_name=args.trainer_name, | |
| shuffle_across_cls=args.shuffle_across_cls, | |
| wds_split=args.wds_split, | |
| four_view_for_latent=True | |
| # wds_output_path=os.path.join(logger.get_dir(), f'wds-%06d.tar') | |
| # load_depth=True # for evaluation | |
| ) | |
| # if args.pose_warm_up_iter > 0: | |
| # overfitting_dataset = load_memory_data( | |
| # file_path=args.data_dir, | |
| # batch_size=args.batch_size, | |
| # reso=args.image_size, | |
| # reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| # num_workers=args.num_workers, | |
| # # load_depth=args.depth_lambda > 0 | |
| # load_depth=True # for evaluation | |
| # ) | |
| # data = [data, overfitting_dataset, args.pose_warm_up_iter] | |
| # eval_data = load_eval_data( | |
| # file_path=args.eval_data_dir, | |
| # batch_size=args.eval_batch_size, | |
| # reso=args.image_size, | |
| # reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| # num_workers=args.num_workers, | |
| # load_depth=True, # for evaluation | |
| # preprocess=auto_encoder.preprocess) | |
| args.img_size = [args.image_size_encoder] | |
| # try dry run | |
| # batch = next(data) | |
| # batch = None | |
| # logger.log("creating model and diffusion...") | |
| # let all processes sync up before starting with a new epoch of training | |
| dist_util.synchronize() | |
| # schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) | |
| opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) | |
| # opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start | |
| # loss_class = E3DGELossClass(device, opt).to(device) | |
| # writer = SummaryWriter() # TODO, add log dir | |
| logger.log("training...") | |
| # TrainLoop = { | |
| # 'input_rec': TrainLoop3DRec, | |
| # 'nv_rec': TrainLoop3DRecNV, | |
| # 'nv_rec_patch': TrainLoop3DRecNVPatch, | |
| # }[args.trainer_name] | |
| # TrainLoop(rec_model=auto_encoder, | |
| # loss_class=loss_class, | |
| # data=data, | |
| # eval_data=eval_data, | |
| # **vars(args)).run_loop() # ! overfitting | |
| # Function to compress an image using gzip | |
| # def compress_image_gzip(image_path): | |
| # def encode_and_compress_image(inp_array, is_image=False): | |
| # # Read the image using imageio | |
| # # image = imageio.v3.imread(image_path) | |
| # # Convert the image to bytes | |
| # # with io.BytesIO() as byte_buffer: | |
| # # imageio.imsave(byte_buffer, image, format="png") | |
| # # image_bytes = byte_buffer.getvalue() | |
| # if is_image: | |
| # inp_bytes = iio.imwrite("<bytes>", inp_array, extension=".png") | |
| # else: | |
| # inp_bytes = inp_array.tobytes() | |
| # # Compress the image data using gzip | |
| # compressed_data = gzip.compress(inp_bytes) | |
| # return compressed_data | |
| def save_pcd_from_depth(dataset_loader, dataset_size, lmdb_path, | |
| start_shard, wds_split): | |
| """ | |
| Convert a PyTorch dataset to LMDB format. | |
| Parameters: | |
| - dataset: PyTorch dataset | |
| - lmdb_path: Path to store the LMDB database | |
| """ | |
| # env = lmdb.open(lmdb_path, map_size=1024 ** 4, readahead=False) # Adjust map_size based on your dataset size | |
| # sink = wds.ShardWriter(lmdb_path, start_shard=start_shard) | |
| # with env.begin(write=True) as txn: | |
| # with env.begin(write=True) as txn: | |
| # txn.put("length".encode("utf-8"), str(dataset_size).encode("utf-8")) | |
| # K = 10000 # fps K | |
| K = 4096 # fps K | |
| # K = 128*128*2 # fps K, 32768 | |
| # K = 1024*24 # 20480 | |
| # K = 4096 # fps K | |
| # if True: | |
| # try: | |
| for idx, sample in enumerate(tqdm(dataset_loader)): | |
| # pass | |
| # remove the batch index of returned dict sample | |
| sample_ins = sample.pop('ins') | |
| # !!! add all() | |
| assert all([ sample_ins[i] == sample_ins[0] for i in range(0, len(sample_ins)) ]), sample_ins # check the batch is the same instnace | |
| img_size = sample['raw_img'].shape[2] | |
| pcd_path = Path(f'{logger.get_dir()}/fps-pcd/{sample_ins[0]}') | |
| if (pcd_path / f'fps-{K}.ply').exists(): | |
| continue | |
| pcd_path.mkdir(parents=True, exist_ok=True) | |
| # sample = { | |
| # # k:v.squeeze(0).cpu().numpy() if isinstance(v, th.Tensor) else v[0] for k, v in sample.items() | |
| # k:v.cpu().numpy() if isinstance(v, th.Tensor) else v for k, v in sample.items() | |
| # # k:v.cpu().numpy() if isinstance(v, torch.Tensor) else v for k, v in sample.items() | |
| # } | |
| B = sample['c'].shape[0] | |
| cam2world_matrix = sample['c'][:, :16].reshape(B, 4, 4) | |
| intrinsics = sample['c'][:, 16:25].reshape(B, 3, 3) | |
| ray_origins, ray_directions = ray_sampler( # shape: | |
| cam2world_matrix, intrinsics, img_size)[:2] | |
| micro = sample | |
| # self.gs.output_size,)[:2] | |
| # depth = rearrange(micro['depth'], '(B V) H W -> ') | |
| # depth_128 = th.nn.functional.interpolate( | |
| # micro['depth'].unsqueeze(1), (128, 128), | |
| # mode='nearest' | |
| # )[:, 0] # since each view has 128x128 Gaussians | |
| # depth = depth_128.reshape(B * V, -1).unsqueeze(-1) | |
| # fg_mask = (micro['depth'] > 0).unsqueeze(1).float() | |
| # fg_mask = micro['alpha_mask'].unsqueeze(1).float() # anti-alias? B 1 H W | |
| fg_mask = (micro['alpha_mask'] == 1).unsqueeze(1).float() # anti-alias? B 1 H W | |
| kernel = th.tensor([[0, 1, 0], [1, 1, 1], [0, 1, | |
| 0]]).to(fg_mask.device) | |
| # ! erode. but still some noise... | |
| ''' | |
| erode_mask = kornia.morphology.erosion(fg_mask, kernel) # B 1 H W | |
| # torchvision.utils.save_image(fg_mask.float()*2-1,'mask.jpg', value_range=(-1,1), normalize=True) | |
| # torchvision.utils.save_image(erode_mask.float()*2-1,'erode_mask.jpg', value_range=(-1,1), normalize=True) | |
| fg_mask = (erode_mask==1).float().reshape(B, -1).unsqueeze(-1) > 0 # | |
| # ''' | |
| # fg_mask = fg_mask.reshape(B, -1).unsqueeze(-1) == 1 # ! for some failed data | |
| # ! no erode: | |
| fg_mask = fg_mask.reshape(B, -1).unsqueeze(-1) > 0 # ! for some failed data | |
| depth = micro['depth'].reshape(B, -1).unsqueeze(-1) | |
| depth = th.where(depth < 1.05, 0, depth) # filter outlier | |
| depth[depth == 0] = 1e10 # so that rays_o will not appear in the final pcd. | |
| # fg_mask = depth>0 | |
| # fg_mask = th.nn.functional.interpolate( | |
| # micro['depth_mask'].unsqueeze(1).to(th.uint8), | |
| # (128, 128), | |
| # mode='nearest').squeeze(1) # B*V H W | |
| # fg_mask = fg_mask.reshape(B * V, -1).unsqueeze(-1) | |
| # gt_pos = gt_pos[gt_pos.nonzero(as_tuple=True)].reshape(-1, 3) # return non-zero points for fps sampling | |
| # pcu.save_mesh_v(f'tmp/gt-512.ply', gt_pos.detach().cpu().numpy(),) | |
| # fps sampling | |
| try: | |
| gt_pos = ray_origins + depth * ray_directions # BV HW 3, already in the world space | |
| gt_pos = fg_mask * gt_pos # remove ray_origins when depth=0 | |
| # gt_pos = gt_pos[[8,16,24,25,26, 27, 31, 35]] | |
| # gt_pos = gt_pos[[5,10,15,20,24,25,26]] | |
| # gt_pos = gt_pos[[4, 12, 20, 25]] | |
| gt_pos = gt_pos[:] | |
| # gt_pos = gt_pos[[25,26]] | |
| gt_pos = gt_pos.reshape(-1, 3).to(dist_util.dev()) | |
| gt_pos = gt_pos.clip(-0.45, 0.45) | |
| gt_pos = th.where(gt_pos.abs()==0.45, 0, gt_pos) # no boundary here? Yes. | |
| # ! filter the zero points together here | |
| nonzero_mask = (gt_pos != 0).all(dim=-1) # Shape: (N, 3) | |
| nonzero_gt_pos = gt_pos[nonzero_mask] | |
| fps_points = pytorch3d.ops.sample_farthest_points( | |
| nonzero_gt_pos.unsqueeze(0), K=K)[0] | |
| pcu.save_mesh_v( | |
| str(pcd_path / f'fps-{K}.ply'), | |
| fps_points[0].detach().cpu().numpy(), | |
| ) | |
| assert (pcd_path / f'fps-{K}.ply').exists() | |
| except Exception as e: | |
| st() | |
| pass | |
| print(pcd_path, 'save failed: ', e) | |
| # ! debug projection matrix | |
| # def pcd_to_homo(pcd): | |
| # return th.cat([pcd, th.ones_like(pcd[..., 0:1])], -1) | |
| # st() | |
| # proj_point = th.inverse(cam2world_matrix[0]).to(fps_points) @ pcd_to_homo(fps_points[0]).permute(1, 0) | |
| # # proj_point = th.inverse(cam2world_matrix[0]).to(fps_points) @ pcd_to_homo((ray_origins + depth * ray_directions)[0].to(fps_points)).permute(1, 0) | |
| # proj_point[:2, ...] /= proj_point[2, ...] | |
| # proj_point[2, ...] = 1 # homo | |
| # proj_point = intrinsics[0].to(fps_points) @ proj_point[:3] | |
| # proj_point = proj_point.permute(1,0)[..., :2] # 768 4 | |
| # st() | |
| # torchvision.utils.save_image(micro['raw_img'][::5].permute(0,3,1,2).float()/127.5-1,'raw.jpg', value_range=(-1,1), normalize=True) | |
| # # encode batch images/depths/strings? no need to encode ins/fname here; just save the caption | |
| # # sample = dataset_loader[idx] | |
| # compressed_sample = {} | |
| # sample['ins'] = sample_ins[0] | |
| # sample['caption'] = sample.pop('caption')[0] | |
| # for k, v in sample.items(): | |
| # # key = f'{idx}-{k}'.encode('utf-8') | |
| # if 'img' in k: # only bytes required? laod the 512 depth bytes only. | |
| # v = encode_and_compress_image(v, is_image=True, compress=True) | |
| # # v = encode_and_compress_image(v, is_image=True, compress=False) | |
| # # elif 'depth' in k: | |
| # elif isinstance(v, str): | |
| # v = v.encode('utf-8') # caption / instance name | |
| # else: # regular bytes encoding | |
| # v = encode_and_compress_image(v.astype(np.float32), is_image=False, compress=True) | |
| # # v = encode_and_compress_image(v.astype(np.float32), is_image=False, compress=False) | |
| # compressed_sample[k] = v | |
| # # st() # TODO, add .gz for compression after pipeline done | |
| # sink.write({ | |
| # "__key__": f"sample_{wds_split:03d}_{idx:07d}", | |
| # # **{f'{k}.pyd': v for k, v in compressed_sample.items()}, # store as pickle, already compressed | |
| # 'sample.pyd': compressed_sample | |
| # # 'sample.gz': compressed_sample | |
| # }) | |
| # break | |
| # if idx > 25: | |
| # break | |
| # except: | |
| # continue | |
| # sink.close() | |
| # convert_to_lmdb(data, os.path.join(logger.get_dir(), dataset_name)) convert_to_lmdb_compressed(data, os.ath.join(logger.get_dir(), dataset_name)) | |
| # convert_to_lmdb_compressed(data, os.path.join(logger.get_dir()), dataset_size) | |
| save_pcd_from_depth(data, dataset_size, | |
| os.path.join(logger.get_dir(), f'wds-%06d.tar'), | |
| args.start_shard, args.wds_split) | |
| def create_argparser(**kwargs): | |
| # defaults.update(model_and_diffusion_defaults()) | |
| defaults = dict( | |
| seed=0, | |
| dataset_size=-1, | |
| trainer_name='input_rec', | |
| use_amp=False, | |
| overfitting=False, | |
| num_workers=4, | |
| image_size=128, | |
| image_size_encoder=224, | |
| iterations=150000, | |
| anneal_lr=False, | |
| lr=5e-5, | |
| weight_decay=0.0, | |
| lr_anneal_steps=0, | |
| batch_size=1, | |
| eval_batch_size=12, | |
| microbatch=-1, # -1 disables microbatches | |
| ema_rate="0.9999", # comma-separated list of EMA values | |
| log_interval=50, | |
| eval_interval=2500, | |
| save_interval=10000, | |
| resume_checkpoint="", | |
| use_fp16=False, | |
| fp16_scale_growth=1e-3, | |
| data_dir="", | |
| eval_data_dir="", | |
| # load_depth=False, # TODO | |
| logdir="/mnt/lustre/yslan/logs/nips23/", | |
| # test warm up pose sampling training | |
| objv_dataset=False, | |
| pose_warm_up_iter=-1, | |
| start_shard=0, | |
| shuffle_across_cls=False, | |
| wds_split=1, # out of 4 | |
| ) | |
| defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
| defaults.update(loss_defaults()) | |
| parser = argparse.ArgumentParser() | |
| add_dict_to_argparser(parser, defaults) | |
| return parser | |
| if __name__ == "__main__": | |
| # os.environ[ | |
| # "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
| # os.environ["TORCH_CPP_LOG_LEVEL"]="INFO" | |
| # os.environ["NCCL_DEBUG"]="INFO" | |
| args = create_argparser().parse_args() | |
| # args.local_rank = int(os.environ["LOCAL_RANK"]) | |
| args.gpus = th.cuda.device_count() | |
| opts = args | |
| args.rendering_kwargs = rendering_options_defaults(opts) | |
| # print(args) | |
| with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
| json.dump(vars(args), f, indent=2) | |
| # Launch processes. | |
| print('Launching processes...') | |
| # try: | |
| training_loop(args) | |
| # except KeyboardInterrupt as e: | |
| # except Exception as e: | |
| # # print(e) | |
| # traceback.print_exc() | |
| # dist_util.cleanup() # clean port and socket when ctrl+c | |