Spaces:
Runtime error
Runtime error
| # SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
| # | |
| # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
| # property and proprietary rights in and to this material, related | |
| # documentation and any modifications thereto. Any use, reproduction, | |
| # disclosure or distribution of this material and related documentation | |
| # without an express license agreement from NVIDIA CORPORATION or | |
| # its affiliates is strictly prohibited. | |
| """Custom replacement for `torch.nn.functional.conv2d` that supports | |
| arbitrarily high order gradients with zero performance penalty.""" | |
| import contextlib | |
| import torch | |
| from pdb import set_trace as st | |
| import traceback | |
| # pylint: disable=redefined-builtin | |
| # pylint: disable=arguments-differ | |
| # pylint: disable=protected-access | |
| #---------------------------------------------------------------------------- | |
| enabled = False # Enable the custom op by setting this to true. | |
| weight_gradients_disabled = False # Forcefully disable computation of gradients with respect to the weights. | |
| def no_weight_gradients(disable=True): | |
| global weight_gradients_disabled | |
| old = weight_gradients_disabled | |
| if disable: | |
| weight_gradients_disabled = True | |
| yield | |
| weight_gradients_disabled = old | |
| #---------------------------------------------------------------------------- | |
| def conv2d(input, | |
| weight, | |
| bias=None, | |
| stride=1, | |
| padding=0, | |
| dilation=1, | |
| groups=1): | |
| if _should_use_custom_op(input): | |
| return _conv2d_gradfix(transpose=False, | |
| weight_shape=weight.shape, | |
| stride=stride, | |
| padding=padding, | |
| output_padding=0, | |
| dilation=dilation, | |
| groups=groups).apply(input, weight, bias) | |
| return torch.nn.functional.conv2d(input=input, | |
| weight=weight, | |
| bias=bias, | |
| stride=stride, | |
| padding=padding, | |
| dilation=dilation, | |
| groups=groups) | |
| def conv_transpose2d(input, | |
| weight, | |
| bias=None, | |
| stride=1, | |
| padding=0, | |
| output_padding=0, | |
| groups=1, | |
| dilation=1): | |
| if _should_use_custom_op(input): | |
| return _conv2d_gradfix(transpose=True, | |
| weight_shape=weight.shape, | |
| stride=stride, | |
| padding=padding, | |
| output_padding=output_padding, | |
| groups=groups, | |
| dilation=dilation).apply(input, weight, bias) | |
| return torch.nn.functional.conv_transpose2d(input=input, | |
| weight=weight, | |
| bias=bias, | |
| stride=stride, | |
| padding=padding, | |
| output_padding=output_padding, | |
| groups=groups, | |
| dilation=dilation) | |
| #---------------------------------------------------------------------------- | |
| def _should_use_custom_op(input): | |
| assert isinstance(input, torch.Tensor) | |
| if (not enabled) or (not torch.backends.cudnn.enabled): | |
| return False | |
| if input.device.type != 'cuda': | |
| return False | |
| return True | |
| def _tuple_of_ints(xs, ndim): | |
| xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs, ) * ndim | |
| assert len(xs) == ndim | |
| assert all(isinstance(x, int) for x in xs) | |
| return xs | |
| #---------------------------------------------------------------------------- | |
| _conv2d_gradfix_cache = dict() | |
| _null_tensor = torch.empty([0]) | |
| def _conv2d_gradfix(transpose, weight_shape, stride, padding, output_padding, | |
| dilation, groups): | |
| # Parse arguments. | |
| ndim = 2 | |
| weight_shape = tuple(weight_shape) | |
| stride = _tuple_of_ints(stride, ndim) | |
| padding = _tuple_of_ints(padding, ndim) | |
| output_padding = _tuple_of_ints(output_padding, ndim) | |
| dilation = _tuple_of_ints(dilation, ndim) | |
| # Lookup from cache. | |
| key = (transpose, weight_shape, stride, padding, output_padding, dilation, | |
| groups) | |
| if key in _conv2d_gradfix_cache: | |
| return _conv2d_gradfix_cache[key] | |
| # Validate arguments. | |
| assert groups >= 1 | |
| assert len(weight_shape) == ndim + 2 | |
| assert all(stride[i] >= 1 for i in range(ndim)) | |
| assert all(padding[i] >= 0 for i in range(ndim)) | |
| assert all(dilation[i] >= 0 for i in range(ndim)) | |
| if not transpose: | |
| assert all(output_padding[i] == 0 for i in range(ndim)) | |
| else: # transpose | |
| assert all(0 <= output_padding[i] < max(stride[i], dilation[i]) | |
| for i in range(ndim)) | |
| # Helpers. | |
| common_kwargs = dict(stride=stride, | |
| padding=padding, | |
| dilation=dilation, | |
| groups=groups) | |
| def calc_output_padding(input_shape, output_shape): | |
| if transpose: | |
| return [0, 0] | |
| return [ | |
| input_shape[i + 2] - (output_shape[i + 2] - 1) * stride[i] - | |
| (1 - 2 * padding[i]) - dilation[i] * (weight_shape[i + 2] - 1) | |
| for i in range(ndim) | |
| ] | |
| # Forward & backward. | |
| class Conv2d(torch.autograd.Function): | |
| def forward(ctx, input, weight, bias): | |
| assert weight.shape == weight_shape | |
| ctx.save_for_backward( | |
| input if weight.requires_grad else _null_tensor, | |
| weight if input.requires_grad else _null_tensor, | |
| ) | |
| ctx.input_shape = input.shape | |
| # Simple 1x1 convolution => cuBLAS (only on Volta, not on Ampere). | |
| if weight_shape[2:] == stride == dilation == ( | |
| 1, 1) and padding == ( | |
| 0, 0) and torch.cuda.get_device_capability( | |
| input.device) < (8, 0): | |
| a = weight.reshape(groups, weight_shape[0] // groups, | |
| weight_shape[1]) | |
| b = input.reshape(input.shape[0], groups, | |
| input.shape[1] // groups, -1) | |
| c = (a.transpose(1, 2) if transpose else a) @ b.permute( | |
| 1, 2, 0, 3).flatten(2) | |
| c = c.reshape(-1, input.shape[0], | |
| *input.shape[2:]).transpose(0, 1) | |
| c = c if bias is None else c + bias.unsqueeze(0).unsqueeze( | |
| 2).unsqueeze(3) | |
| return c.contiguous( | |
| memory_format=(torch.channels_last if input.stride(1) == | |
| 1 else torch.contiguous_format)) | |
| # General case => cuDNN. | |
| if transpose: | |
| return torch.nn.functional.conv_transpose2d( | |
| input=input, | |
| weight=weight, | |
| bias=bias, | |
| output_padding=output_padding, | |
| **common_kwargs) | |
| return torch.nn.functional.conv2d(input=input, | |
| weight=weight, | |
| bias=bias, | |
| **common_kwargs) | |
| def backward(ctx, grad_output): | |
| input, weight = ctx.saved_tensors | |
| input_shape = ctx.input_shape | |
| grad_input = None | |
| grad_weight = None | |
| grad_bias = None | |
| if ctx.needs_input_grad[0]: | |
| p = calc_output_padding(input_shape=input_shape, | |
| output_shape=grad_output.shape) | |
| op = _conv2d_gradfix(transpose=(not transpose), | |
| weight_shape=weight_shape, | |
| output_padding=p, | |
| **common_kwargs) | |
| grad_input = op.apply(grad_output, weight, None) | |
| assert grad_input.shape == input_shape | |
| if ctx.needs_input_grad[1] and not weight_gradients_disabled: | |
| grad_weight = Conv2dGradWeight.apply(grad_output, input, | |
| weight) | |
| assert grad_weight.shape == weight_shape | |
| if ctx.needs_input_grad[2]: | |
| grad_bias = grad_output.sum([0, 2, 3]) | |
| return grad_input, grad_weight, grad_bias | |
| # Gradient with respect to the weights. | |
| class Conv2dGradWeight(torch.autograd.Function): | |
| def forward(ctx, grad_output, input, weight): | |
| ctx.save_for_backward( | |
| grad_output if input.requires_grad else _null_tensor, | |
| input if grad_output.requires_grad else _null_tensor, | |
| ) | |
| ctx.grad_output_shape = grad_output.shape | |
| ctx.input_shape = input.shape | |
| # Simple 1x1 convolution => cuBLAS (on both Volta and Ampere). | |
| if weight_shape[2:] == stride == dilation == ( | |
| 1, 1) and padding == (0, 0): | |
| a = grad_output.reshape(grad_output.shape[0], groups, | |
| grad_output.shape[1] // groups, | |
| -1).permute(1, 2, 0, 3).flatten(2) | |
| b = input.reshape(input.shape[0], groups, | |
| input.shape[1] // groups, | |
| -1).permute(1, 2, 0, 3).flatten(2) | |
| c = (b @ a.transpose(1, 2) if transpose else | |
| a @ b.transpose(1, 2)).reshape(weight_shape) | |
| return c.contiguous( | |
| memory_format=(torch.channels_last if input.stride(1) == | |
| 1 else torch.contiguous_format)) | |
| # General case => cuDNN. | |
| # print(input.device, weight.device, flush=True) | |
| # for line in traceback.format_stack(): | |
| # print(line.strip(), flush=True) | |
| return torch.ops.aten.convolution_backward( | |
| grad_output=grad_output, | |
| input=input, | |
| weight=weight, | |
| bias_sizes=None, | |
| stride=stride, | |
| padding=padding, | |
| dilation=dilation, | |
| transposed=transpose, | |
| output_padding=output_padding, | |
| groups=groups, | |
| output_mask=[False, True, False])[1] | |
| def backward(ctx, grad2_grad_weight): | |
| grad_output, input = ctx.saved_tensors | |
| grad_output_shape = ctx.grad_output_shape | |
| input_shape = ctx.input_shape | |
| grad2_grad_output = None | |
| grad2_input = None | |
| if ctx.needs_input_grad[0]: | |
| grad2_grad_output = Conv2d.apply(input, grad2_grad_weight, | |
| None) | |
| assert grad2_grad_output.shape == grad_output_shape | |
| if ctx.needs_input_grad[1]: | |
| p = calc_output_padding(input_shape=input_shape, | |
| output_shape=grad_output_shape) | |
| op = _conv2d_gradfix(transpose=(not transpose), | |
| weight_shape=weight_shape, | |
| output_padding=p, | |
| **common_kwargs) | |
| grad2_input = op.apply(grad_output, grad2_grad_weight, None) | |
| assert grad2_input.shape == input_shape | |
| return grad2_grad_output, grad2_input | |
| _conv2d_gradfix_cache[key] = Conv2d | |
| return Conv2d | |
| #---------------------------------------------------------------------------- | |