Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
|
@@ -10,7 +10,7 @@ print('xformers version: {}'.format(xformers.__version__))
|
|
| 10 |
|
| 11 |
def install_cuda_toolkit():
|
| 12 |
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
|
| 13 |
-
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
|
| 14 |
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
| 15 |
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
| 16 |
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
|
|
@@ -114,6 +114,9 @@ from utils.infer_utils import remove_background, resize_foreground
|
|
| 114 |
|
| 115 |
SEED = 0
|
| 116 |
|
|
|
|
|
|
|
|
|
|
| 117 |
def resize_to_224(img):
|
| 118 |
img = transforms.functional.resize(img, 518, # required by dino.
|
| 119 |
interpolation=transforms.InterpolationMode.LANCZOS)
|
|
@@ -147,7 +150,7 @@ def main(args_1, args_2):
|
|
| 147 |
dist_util.setup_dist(args_1)
|
| 148 |
logger.configure(dir=args_1.logdir)
|
| 149 |
|
| 150 |
-
th.cuda.empty_cache()
|
| 151 |
|
| 152 |
th.cuda.manual_seed_all(SEED)
|
| 153 |
np.random.seed(SEED)
|
|
@@ -170,9 +173,9 @@ def main(args_1, args_2):
|
|
| 170 |
|
| 171 |
opts = eg3d_options_default()
|
| 172 |
|
| 173 |
-
denoise_model_stage1.to(
|
| 174 |
denoise_model_stage1.eval()
|
| 175 |
-
denoise_model_stage2.to(
|
| 176 |
denoise_model_stage2.eval()
|
| 177 |
|
| 178 |
# * auto-encoder reconstruction model
|
|
@@ -181,7 +184,7 @@ def main(args_1, args_2):
|
|
| 181 |
**args_to_dict(args_1,
|
| 182 |
encoder_and_nsr_defaults().keys()))
|
| 183 |
|
| 184 |
-
auto_encoder.to(
|
| 185 |
auto_encoder.eval()
|
| 186 |
|
| 187 |
# faster inference
|
|
@@ -287,7 +290,7 @@ def main(args_1, args_2):
|
|
| 287 |
</div>
|
| 288 |
|
| 289 |
# GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation
|
| 290 |
-
**GaussianAnything is a native 3D diffusion model that supports high-quality 2D Gaussians generation.
|
| 291 |
It first trains a 3D VAE on **Objaverse**, which compress each 3D asset into a compact point cloud-structured latent.
|
| 292 |
After that, a image/text-conditioned diffusion model is trained following LDM paradigm.
|
| 293 |
The model used in the demo adopts 3D DiT architecture and flow-matching framework, and supports single-image condition.
|
|
|
|
| 10 |
|
| 11 |
def install_cuda_toolkit():
|
| 12 |
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
|
| 13 |
+
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" # ! cu121 already installed
|
| 14 |
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
| 15 |
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
| 16 |
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
|
|
|
|
| 114 |
|
| 115 |
SEED = 0
|
| 116 |
|
| 117 |
+
torch.set_grad_enabled(False)
|
| 118 |
+
device = torch.device('cuda')
|
| 119 |
+
|
| 120 |
def resize_to_224(img):
|
| 121 |
img = transforms.functional.resize(img, 518, # required by dino.
|
| 122 |
interpolation=transforms.InterpolationMode.LANCZOS)
|
|
|
|
| 150 |
dist_util.setup_dist(args_1)
|
| 151 |
logger.configure(dir=args_1.logdir)
|
| 152 |
|
| 153 |
+
# th.cuda.empty_cache()
|
| 154 |
|
| 155 |
th.cuda.manual_seed_all(SEED)
|
| 156 |
np.random.seed(SEED)
|
|
|
|
| 173 |
|
| 174 |
opts = eg3d_options_default()
|
| 175 |
|
| 176 |
+
denoise_model_stage1.to(device)
|
| 177 |
denoise_model_stage1.eval()
|
| 178 |
+
denoise_model_stage2.to(device)
|
| 179 |
denoise_model_stage2.eval()
|
| 180 |
|
| 181 |
# * auto-encoder reconstruction model
|
|
|
|
| 184 |
**args_to_dict(args_1,
|
| 185 |
encoder_and_nsr_defaults().keys()))
|
| 186 |
|
| 187 |
+
auto_encoder.to(device)
|
| 188 |
auto_encoder.eval()
|
| 189 |
|
| 190 |
# faster inference
|
|
|
|
| 290 |
</div>
|
| 291 |
|
| 292 |
# GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation
|
| 293 |
+
**GaussianAnything** is a native 3D diffusion model that supports high-quality 2D Gaussians generation.
|
| 294 |
It first trains a 3D VAE on **Objaverse**, which compress each 3D asset into a compact point cloud-structured latent.
|
| 295 |
After that, a image/text-conditioned diffusion model is trained following LDM paradigm.
|
| 296 |
The model used in the demo adopts 3D DiT architecture and flow-matching framework, and supports single-image condition.
|