Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import spaces
|
| 4 |
+
from diffusers import FluxInpaintPipeline
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
# Initialize the pipeline
|
| 8 |
+
pipe = FluxInpaintPipeline.from_pretrained(
|
| 9 |
+
"black-forest-labs/FLUX.1-dev",
|
| 10 |
+
torch_dtype=torch.bfloat16
|
| 11 |
+
)
|
| 12 |
+
pipe.to("cuda")
|
| 13 |
+
pipe.load_lora_weights(
|
| 14 |
+
"ali-vilab/In-Context-LoRA",
|
| 15 |
+
weight_name="visual-identity-design.safetensors"
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
def square_center_crop(img, target_size=768):
|
| 19 |
+
if img.mode in ('RGBA', 'P'):
|
| 20 |
+
img = img.convert('RGB')
|
| 21 |
+
|
| 22 |
+
width, height = img.size
|
| 23 |
+
crop_size = min(width, height)
|
| 24 |
+
|
| 25 |
+
left = (width - crop_size) // 2
|
| 26 |
+
top = (height - crop_size) // 2
|
| 27 |
+
right = left + crop_size
|
| 28 |
+
bottom = top + crop_size
|
| 29 |
+
|
| 30 |
+
img_cropped = img.crop((left, top, right, bottom))
|
| 31 |
+
return img_cropped.resize((target_size, target_size), Image.Resampling.LANCZOS)
|
| 32 |
+
|
| 33 |
+
def duplicate_horizontally(img):
|
| 34 |
+
width, height = img.size
|
| 35 |
+
if width != height:
|
| 36 |
+
raise ValueError(f"Input image must be square, got {width}x{height}")
|
| 37 |
+
|
| 38 |
+
new_image = Image.new('RGB', (width * 2, height))
|
| 39 |
+
new_image.paste(img, (0, 0))
|
| 40 |
+
new_image.paste(img, (width, 0))
|
| 41 |
+
return new_image
|
| 42 |
+
|
| 43 |
+
# Load the mask image
|
| 44 |
+
mask = Image.open("mask_square.png")
|
| 45 |
+
|
| 46 |
+
@spaces.GPU
|
| 47 |
+
def generate(image, prompt_user):
|
| 48 |
+
prompt_structure = "The two-panel image showcases the logo of a brand, [LEFT] the left panel is showing the logo [RIGHT] the right panel has this logo applied to "
|
| 49 |
+
prompt = prompt_structure + prompt_user
|
| 50 |
+
|
| 51 |
+
cropped_image = square_center_crop(image)
|
| 52 |
+
logo_dupli = duplicate_horizontally(cropped_image)
|
| 53 |
+
|
| 54 |
+
out = pipe(
|
| 55 |
+
prompt=prompt,
|
| 56 |
+
image=logo_dupli,
|
| 57 |
+
mask_image=mask,
|
| 58 |
+
guidance_scale=6,
|
| 59 |
+
height=768,
|
| 60 |
+
width=1536,
|
| 61 |
+
num_inference_steps=28,
|
| 62 |
+
max_sequence_length=256,
|
| 63 |
+
strength=1
|
| 64 |
+
).images[0]
|
| 65 |
+
|
| 66 |
+
width, height = out.size
|
| 67 |
+
half_width = width // 2
|
| 68 |
+
image_2 = out.crop((half_width, 0, width, height))
|
| 69 |
+
return image_2
|
| 70 |
+
|
| 71 |
+
def process_image(input_image, prompt):
|
| 72 |
+
try:
|
| 73 |
+
if input_image is None:
|
| 74 |
+
return None, "Please upload an image first."
|
| 75 |
+
|
| 76 |
+
if not prompt:
|
| 77 |
+
return None, "Please provide a prompt."
|
| 78 |
+
|
| 79 |
+
result = generate(input_image, prompt)
|
| 80 |
+
return result, "Generation completed successfully!"
|
| 81 |
+
except Exception as e:
|
| 82 |
+
return None, f"Error during generation: {str(e)}"
|
| 83 |
+
|
| 84 |
+
with gr.Blocks() as demo:
|
| 85 |
+
gr.Markdown("# Logo in Context")
|
| 86 |
+
gr.Markdown("### In-Context LoRA + Image-to-Image, apply your logo to anything")
|
| 87 |
+
|
| 88 |
+
with gr.Row():
|
| 89 |
+
with gr.Column():
|
| 90 |
+
input_image = gr.Image(
|
| 91 |
+
label="Upload Logo Image",
|
| 92 |
+
type="pil",
|
| 93 |
+
height=384
|
| 94 |
+
)
|
| 95 |
+
prompt_input = gr.Textbox(
|
| 96 |
+
label="Where should the logo be applied?",
|
| 97 |
+
placeholder="e.g., a coffee cup on a wooden table",
|
| 98 |
+
lines=2
|
| 99 |
+
)
|
| 100 |
+
generate_btn = gr.Button("Generate Application", variant="primary")
|
| 101 |
+
|
| 102 |
+
with gr.Column():
|
| 103 |
+
output_image = gr.Image(label="Generated Application")
|
| 104 |
+
status_text = gr.Textbox(
|
| 105 |
+
label="Status",
|
| 106 |
+
interactive=False
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
with gr.Row():
|
| 110 |
+
gr.Markdown("""
|
| 111 |
+
### Instructions:
|
| 112 |
+
1. Upload a logo image (preferably square)
|
| 113 |
+
2. Describe where you'd like to see the logo applied
|
| 114 |
+
3. Click 'Generate Application' and wait for the result
|
| 115 |
+
|
| 116 |
+
Note: The generation process might take a few moments.
|
| 117 |
+
""")
|
| 118 |
+
|
| 119 |
+
# Set up the click event
|
| 120 |
+
generate_btn.click(
|
| 121 |
+
fn=process_image,
|
| 122 |
+
inputs=[input_image, prompt_input],
|
| 123 |
+
outputs=[output_image]
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Launch the interface
|
| 127 |
+
if __name__ == "__main__":
|
| 128 |
+
demo.launch()
|