Spaces:
Runtime error
Runtime error
| import warnings | |
| from typing import Optional, Tuple | |
| import torch | |
| from flash_attn import __version__ as flash_attn_version | |
| from flash_attn.bert_padding import pad_input, unpad_input | |
| from flash_attn.flash_attn_interface import ( | |
| flash_attn_func, | |
| flash_attn_varlen_kvpacked_func, | |
| ) | |
| from transformers.models.llama.modeling_llama import ( | |
| LlamaAttention, | |
| LlamaModel, | |
| rotate_half, | |
| ) | |
| def apply_rotary_pos_emb(q, k, cos_sin, position_ids): | |
| gather_indices = position_ids[:, :, None, None] # [bsz, seq_len, 1, 1] | |
| gather_indices = gather_indices.repeat( | |
| 1, 1, cos_sin[0].shape[1], cos_sin[0].shape[3] | |
| ) | |
| bsz = gather_indices.shape[0] | |
| cos, sin = ( | |
| torch.gather(x.transpose(1, 2).repeat(bsz, 1, 1, 1), 1, gather_indices) | |
| for x in cos_sin | |
| ) | |
| q, k = ((x * cos) + (rotate_half(x) * sin) for x in (q, k)) | |
| return q, k | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| padding_mask: Optional[torch.Tensor] = None, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| if output_attentions: | |
| warnings.warn( | |
| "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead." | |
| ) | |
| bsz, q_len, _ = hidden_states.size() | |
| kv_heads = getattr(self, "num_key_value_heads", self.num_heads) | |
| q, k, v = ( | |
| op(hidden_states).view(bsz, q_len, nh, self.head_dim) | |
| for op, nh in ( | |
| (self.q_proj, self.num_heads), | |
| (self.k_proj, kv_heads), | |
| (self.v_proj, kv_heads), | |
| ) | |
| ) | |
| # shape: (b, s, num_heads, head_dim) | |
| kv_seq_len = k.shape[1] | |
| past_kv_len = 0 | |
| if past_key_value is not None: | |
| past_kv_len = past_key_value[0].shape[2] | |
| kv_seq_len += past_kv_len | |
| cos_sin = self.rotary_emb(v, seq_len=kv_seq_len) | |
| q, k = apply_rotary_pos_emb(q, k, cos_sin, position_ids) | |
| if past_key_value is not None: | |
| assert ( | |
| flash_attn_version >= "2.1.0" | |
| ), "past_key_value support requires flash-attn >= 2.1.0" | |
| # reuse k, v | |
| k = torch.cat([past_key_value[0].transpose(1, 2), k], dim=1) | |
| v = torch.cat([past_key_value[1].transpose(1, 2), v], dim=1) | |
| past_key_value = (k.transpose(1, 2), v.transpose(1, 2)) if use_cache else None | |
| if attention_mask is None: | |
| output = flash_attn_func(q, k, v, 0.0, softmax_scale=None, causal=True).view( | |
| bsz, q_len, -1 | |
| ) | |
| else: | |
| q, indices, cu_q_lens, max_s = unpad_input(q, attention_mask[:, -q_len:]) | |
| # We can skip concat and call unpad twice but seems better to call unpad only once. | |
| kv, _, cu_k_lens, max_k = unpad_input( | |
| torch.stack((k, v), dim=2), attention_mask | |
| ) | |
| output_unpad = flash_attn_varlen_kvpacked_func( | |
| q, | |
| kv, | |
| cu_q_lens, | |
| cu_k_lens, | |
| max_s, | |
| max_k, | |
| 0.0, | |
| softmax_scale=None, | |
| causal=True, | |
| ) | |
| output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim) | |
| output = pad_input(output_unpad, indices, bsz, q_len) | |
| return self.o_proj(output), None, past_key_value | |
| # Disable the transformation of the attention mask in LlamaModel as flash attention | |
| # takes a boolean key_padding_mask. Fills in the past kv length for use in forward. | |
| def _prepare_decoder_attention_mask( | |
| self, attention_mask, input_shape, inputs_embeds, past_key_values_length | |
| ): | |
| # [bsz, seq_len] | |
| if past_key_values_length > 0 and attention_mask is not None: | |
| attention_mask = torch.cat( | |
| ( | |
| torch.full( | |
| (input_shape[0], past_key_values_length), | |
| True, | |
| dtype=attention_mask.dtype, | |
| device=attention_mask.device, | |
| ), | |
| attention_mask, | |
| ), | |
| dim=-1, | |
| ) | |
| if attention_mask is not None and torch.all(attention_mask): | |
| return None # This uses the faster call when training with full samples | |
| return attention_mask | |
| def replace_llama_attn_with_flash_attn(): | |
| cuda_major, cuda_minor = torch.cuda.get_device_capability() | |
| if cuda_major < 8: | |
| warnings.warn( | |
| "Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward." | |
| "ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593" | |
| ) | |
| LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask | |
| LlamaAttention.forward = forward | |
| def test(): | |
| from fastchat.train.llama_flash_attn_monkey_patch import forward as fastchat_forward | |
| from transformers.models.llama.configuration_llama import LlamaConfig | |
| config = LlamaConfig( | |
| hidden_size=1024, | |
| intermediate_size=128, | |
| num_hidden_layers=1, | |
| num_attention_heads=8, | |
| max_position_embeddings=16, | |
| ) | |
| device = torch.device("cuda") | |
| model = LlamaModel(config) | |
| attn = LlamaAttention(config).to(device).half() | |
| bsz, hs, seqlen = 2, config.hidden_size, config.max_position_embeddings | |
| position_ids = torch.arange(seqlen, dtype=torch.long, device=device).view( | |
| -1, seqlen | |
| ) | |
| mask = torch.full((bsz, seqlen), True, dtype=torch.bool, device=device) | |
| for i in range(4): | |
| hidden = torch.rand((bsz, seqlen, hs), dtype=torch.float16, device=device) | |
| if i: | |
| mask[0, -i:] = False | |
| mask[1, :i] = False | |
| lmask = model._prepare_decoder_attention_mask(mask, hidden.shape[:2], hidden, 0) | |
| ref, _, _ = attn.forward( | |
| hidden, attention_mask=lmask, position_ids=position_ids | |
| ) | |
| fast, _, _ = fastchat_forward( | |
| attn, hidden, attention_mask=mask, position_ids=position_ids | |
| ) | |
| lmask = _prepare_decoder_attention_mask( | |
| model, mask, hidden.shape[:2], hidden, 0 | |
| ) | |
| test, _, _ = forward( | |
| attn, hidden, attention_mask=lmask, position_ids=position_ids | |
| ) | |
| print(f"Mean(abs(ref)) = {torch.mean(torch.abs(ref))}") | |
| print(f"Mean(abs(ref - fast)) = {torch.mean(torch.abs(ref - fast))}") | |
| print(f"Mean(abs(ref - test)) = {torch.mean(torch.abs(ref - test))}") | |
| print(f"Mean(abs(fast - test)) = {torch.mean(torch.abs(fast - test))}") | |
| print(f"allclose(fast, test) = {torch.allclose(fast, test)}") | |
| with torch.no_grad(): | |
| # Also check that past_kv is handled properly | |
| hidden = torch.rand((bsz, seqlen, hs), dtype=torch.float16, device=device) | |
| part_len = seqlen // 4 | |
| assert part_len * 4 == seqlen | |
| mask = torch.full((bsz, seqlen), True, dtype=torch.bool, device=device) | |
| mask[0, -2:] = False | |
| lmask = _prepare_decoder_attention_mask( | |
| model, mask, hidden.shape[:2], hidden, 0 | |
| ) | |
| oneshot, _, _ = forward( | |
| attn, hidden, attention_mask=lmask, position_ids=position_ids | |
| ) | |
| parts = [] | |
| past_kv, past_kv_len = None, 0 | |
| for i in range(4): | |
| start = part_len * i | |
| end = start + part_len | |
| hidden_part = hidden[:, start:end, ...] | |
| lmask = _prepare_decoder_attention_mask( | |
| model, | |
| mask[:, start:end], | |
| hidden_part.shape[:2], | |
| hidden_part, | |
| past_kv_len, | |
| ) | |
| part, _, past_kv = forward( | |
| attn, | |
| hidden_part.clone(), | |
| attention_mask=lmask, | |
| position_ids=position_ids[:, start:end], | |
| past_key_value=past_kv, | |
| use_cache=True, | |
| ) | |
| parts.append(part) | |
| past_kv_len = past_kv[0].shape[2] | |
| print( | |
| f"allclose(oneshot[:, 0], parts[0]) = {torch.allclose(oneshot[:, :part_len], parts[0])}" | |
| ) | |
| print( | |
| f"allclose(oneshot, parts) = {torch.allclose(oneshot, torch.cat(parts, dim=1))}" | |
| ) | |
| if __name__ == "__main__": | |
| test() | |