Spaces:
Configuration error
Configuration error
File size: 22,263 Bytes
95257c4 c2a5690 95257c4 ad6add2 c2a5690 bf146b9 95257c4 c2a5690 a5ec286 c2a5690 95257c4 c2a5690 a5ec286 c2a5690 a5ec286 95257c4 a5ec286 95257c4 a5ec286 1679fe7 a5ec286 bf146b9 e4145db 0580cf1 95257c4 0580cf1 95257c4 0580cf1 95257c4 c2a5690 95257c4 c2a5690 95257c4 c2a5690 95257c4 c2a5690 95257c4 c2a5690 95257c4 c2a5690 95257c4 c2a5690 95257c4 c2a5690 a5ec286 c2a5690 a5ec286 95257c4 c2a5690 95257c4 c2a5690 95257c4 c2a5690 95257c4 c2a5690 95257c4 c2a5690 95257c4 0580cf1 ad6add2 95257c4 c17b50c c2a5690 95257c4 c2a5690 95257c4 c2a5690 7dba9fe ad6add2 95257c4 c2a5690 a5ec286 c2a5690 a5ec286 0580cf1 95257c4 c2a5690 0580cf1 c2a5690 0580cf1 c2a5690 a5ec286 c2a5690 95257c4 0580cf1 95257c4 0580cf1 a5ec286 0580cf1 95257c4 c2a5690 0580cf1 95257c4 0580cf1 a5ec286 c2a5690 0580cf1 95257c4 0580cf1 a5ec286 c2a5690 a5ec286 c2a5690 95257c4 c2a5690 95257c4 c2a5690 95257c4 c2a5690 95257c4 7dba9fe 95257c4 7dba9fe 95257c4 e4145db a5ec286 ecd9134 95257c4 a5ec286 e4145db 95257c4 a5ec286 95257c4 a5ec286 c2a5690 e4145db a5ec286 c2a5690 e4145db a5ec286 c2a5690 a5ec286 0580cf1 a5ec286 95257c4 0580cf1 a5ec286 c2a5690 95257c4 c2a5690 95257c4 c2a5690 95257c4 8b3e988 c2a5690 e4145db 8b3e988 c2a5690 95257c4 c2a5690 bf146b9 a5ec286 c2a5690 95257c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
# app.py — Gradio front-end that calls test.py IN-PROCESS (ZeroGPU-safe)
# Folder layout per run (under TEMP_ROOT):
# input_video/<video_stem>/00000.png ...
# ref/<video_stem>/ref.png
# output/<video_stem>/*.png
# Final mp4: TEMP_ROOT/<video_stem>.mp4
import os
import sys
import shutil
import urllib.request
from os import path
import io
from contextlib import redirect_stdout, redirect_stderr
import subprocess
import tempfile
import importlib
import gradio as gr
import spaces
from PIL import Image
import cv2
import torch # used for cuda sync & empty_cache
# ----------------- BASIC INFO -----------------
CHECKPOINT_URL = "https://github.com/yyang181/colormnet/releases/download/v0.1/DINOv2FeatureV6_LocalAtten_s2_154000.pth"
CHECKPOINT_LOCAL = "DINOv2FeatureV6_LocalAtten_s2_154000.pth"
TITLE = "ColorMNet — 视频着色 / Video Colorization (ZeroGPU, CUDA-only)"
DESC = """
**中文**
上传**黑白视频**与**参考图像**,点击「开始着色 / Start Coloring」。
此版本在 **app.py 中调度 ZeroGPU**,并**在同一进程**调用 `test.py` 的入口函数。
临时工作目录结构:
- 抽帧:`_colormnet_tmp/input_video/<视频名>/00000.png ...`
- 参考:`_colormnet_tmp/ref/<视频名>/ref.png`
- 输出:`_colormnet_tmp/output/<视频名>/*.png`
- 合成视频:`_colormnet_tmp/<视频名>.mp4`
**English**
Upload a **B&W video** and a **reference image**, then click “Start Coloring”.
This app runs **ZeroGPU scheduling in `app.py`** and calls `test.py` **in-process**.
Temp workspace layout:
- Frames: `_colormnet_tmp/input_video/<stem>/00000.png ...`
- Reference: `_colormnet_tmp/ref/<stem>/ref.png`
- Output frames: `_colormnet_tmp/output/<stem>/*.png`
- Final video: `_colormnet_tmp/<stem>.mp4`
"""
PAPER = """
### 论文 / Paper
**ECCV 2024 — ColorMNet: A Memory-based Deep Spatial-Temporal Feature Propagation Network for Video Colorization**
如果你喜欢这个项目,欢迎到 GitHub 点个 ⭐ Star:
**GitHub**: https://github.com/yyang181/colormnet
**BibTeX 引用 / BibTeX Citation**
```bibtex
@inproceedings{yang2024colormnet,
author = {Yixin Yang and Jiangxin Dong and Jinhui Tang and Jinshan Pan},
title = {ColorMNet: A Memory-based Deep Spatial-Temporal Feature Propagation Network for Video Colorization},
booktitle = ECCV,
year = {2024}
}
"""
BADGES_HTML = """
<div style="display:flex;gap:12px;align-items:center;flex-wrap:wrap;">
<a href="https://github.com/yyang181/colormnet" target="_blank" title="Open GitHub Repo">
<img alt="GitHub Repo"
src="https://img.shields.io/badge/GitHub-colormnet-181717?logo=github" />
</a>
<a href="https://github.com/yyang181/colormnet/stargazers" target="_blank" title="Star on GitHub">
<img alt="GitHub Repo stars"
src="https://img.shields.io/github/stars/yyang181/colormnet?style=social" />
</a>
</div>
"""
# ----------------- REFERENCE FRAME GUIDE (NO CROPPING) -----------------
REF_GUIDE_MD = r"""
## 参考帧制作指南 / Reference Frame Guide
**目的 / Goal**
为模型提供一张与你的视频关键帧在**姿态、光照、构图**尽量接近的**彩色参考图**,用来指导整段视频的着色风格与主体颜色。
---
### 中文步骤
1. **挑帧**:从视频里挑一帧(或相近角度的照片),尽量与要着色的镜头在**姿态 / 光照 / 场景**一致。
2. **上色方式**:若你只有黑白参考图、但需要彩色参考,可用 **通义千问·图像编辑(Qwen-Image)**:
- 打开:<https://chat.qwen.ai/> → 选择**图像编辑**
- 上传你的黑白参考图
- 在提示词里输入:
**「帮我给这张照片上色,只修改颜色,不要修改内容」**
- 可按需多次编辑(如补充「衣服为复古蓝、肤色自然、不要锐化」)
3. **保存格式**:PNG/JPG 均可;推荐分辨率 ≥ **480px**(短边)。
4. **文件放置**:本应用会自动放置为 `ref/<视频名>/ref.png`。
**注意事项(Do/Don’t)**
- ✅ 主体清晰、颜色干净,不要过曝或强滤镜。
- ✅ 关键区域(衣服、皮肤、头发、天空等)颜色与目标风格一致。
- ❌ 不要更改几何结构(如人脸形状/姿态),**只修改颜色**。
- ❌ 避免文字、贴纸、重度风格化滤镜。
---
### English Steps
1. **Pick a frame** (or a similar photo) that matches the target shot in **pose / lighting / composition**.
2. **Colorizing if your reference is B&W** — use **Qwen-Image (Image Editing)**:
- Open <https://chat.qwen.ai/> → **Image Editing**
- Upload your B&W reference
- Prompt: **“Help me colorize this photo; only change colors, do not alter the content.”**
- Iterate if needed (e.g., “vintage blue jacket, natural skin tone; avoid sharpening”).
3. **Format**: PNG/JPG; recommended short side ≥ **480px**.
4. **File placement**: The app will place it as `ref/<video_stem>/ref.png`.
**Do / Don’t**
- ✅ Clean subject and palette; avoid overexposure/harsh filters.
- ✅ Ensure key regions (clothes/skin/hair/sky) match the intended colors.
- ❌ Do not change geometry/structure — **colors only**.
- ❌ Avoid text/stickers/heavy stylization filters.
"""
# ----------------- TEMP WORKDIR -----------------
TEMP_ROOT = path.join(os.getcwd(), "_colormnet_tmp")
INPUT_DIR = "input_video"
REF_DIR = "ref"
OUTPUT_DIR = "output"
def reset_temp_root():
"""每次运行前清空并重建临时工作目录。"""
if path.isdir(TEMP_ROOT):
shutil.rmtree(TEMP_ROOT, ignore_errors=True)
os.makedirs(TEMP_ROOT, exist_ok=True)
for sub in (INPUT_DIR, REF_DIR, OUTPUT_DIR):
os.makedirs(path.join(TEMP_ROOT, sub), exist_ok=True)
def ensure_dir(d: str):
os.makedirs(d, exist_ok=True)
# ----------------- CHECKPOINT (可选) -----------------
def ensure_checkpoint():
"""若 test.py 会在当前目录加载权重,可提前预下载,避免首次拉取超时。"""
try:
if not path.exists(CHECKPOINT_LOCAL):
print(f"[INFO] Downloading checkpoint from: {CHECKPOINT_URL}")
urllib.request.urlretrieve(CHECKPOINT_URL, CHECKPOINT_LOCAL)
print("[INFO] Checkpoint downloaded:", CHECKPOINT_LOCAL)
except Exception as e:
print(f"[WARN] 预下载权重失败(首次推理会再试): {e}")
# ----------------- VIDEO UTILS -----------------
def video_to_frames_dir(video_path: str, frames_dir: str):
"""
抽帧到 frames_dir/00000.png ...
返回: (w, h, fps, n_frames)
"""
ensure_dir(frames_dir)
cap = cv2.VideoCapture(video_path)
assert cap.isOpened(), f"Cannot open video: {video_path}"
fps = cap.get(cv2.CAP_PROP_FPS) or 25.0
idx = 0
w = h = None
while True:
ret, frame = cap.read()
if not ret:
break
if frame is None:
continue
h, w = frame.shape[:2]
out_path = path.join(frames_dir, f"{idx:05d}.png")
ok = cv2.imwrite(out_path, frame)
if not ok:
raise RuntimeError(f"写入抽帧失败 / Failed to write: {out_path}")
idx += 1
cap.release()
if idx == 0:
raise RuntimeError("视频无可读帧 / Input video has no readable frames.")
return w, h, fps, idx
def encode_frames_to_video(frames_dir: str, out_path: str, fps: float):
frames = sorted([f for f in os.listdir(frames_dir) if f.lower().endswith(".png")])
if not frames:
raise RuntimeError(f"No frames found in {frames_dir}")
first = cv2.imread(path.join(frames_dir, frames[0]))
if first is None:
raise RuntimeError(f"Failed to read first frame {frames[0]}")
h, w = first.shape[:2]
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
vw = cv2.VideoWriter(out_path, fourcc, fps, (w, h))
for f in frames:
img = cv2.imread(path.join(frames_dir, f))
if img is None:
continue
vw.write(img)
vw.release()
# ----------------- CLI MAPPING -----------------
CONFIG_TO_CLI = {
"FirstFrameIsNotExemplar": "--FirstFrameIsNotExemplar", # bool
"dataset": "--dataset",
"split": "--split",
"save_all": "--save_all", # bool
"benchmark": "--benchmark", # bool
"disable_long_term": "--disable_long_term", # bool
"max_mid_term_frames": "--max_mid_term_frames",
"min_mid_term_frames": "--min_mid_term_frames",
"max_long_term_elements": "--max_long_term_elements",
"num_prototypes": "--num_prototypes",
"top_k": "--top_k",
"mem_every": "--mem_every",
"deep_update_every": "--deep_update_every",
"save_scores": "--save_scores", # bool
"flip": "--flip", # bool
"size": "--size",
"reverse": "--reverse", # bool
}
def build_args_list_for_test(d16_batch_path: str,
out_path: str,
ref_root: str,
cfg: dict):
"""
构造传给 test.run_cli(args_list) 的参数列表。
- 必传:--d16_batch_path <input_video_root>、--ref_path <ref_root>、--output <output_root>
"""
args = [
"--d16_batch_path", d16_batch_path,
"--ref_path", ref_root,
"--output", out_path,
]
for k, v in cfg.items():
if k not in CONFIG_TO_CLI:
continue
flag = CONFIG_TO_CLI[k]
if isinstance(v, bool):
if v:
args.append(flag) # store_true
elif v is None:
continue
else:
args.extend([flag, str(v)])
return args
# ===== 新增:ZeroGPU 后按需安装 Pytorch-Correlation-extension =====
_CORR_OK_STAMP = path.join(os.getcwd(), ".corr_ext_installed")
def ensure_correlation_extension_installed():
"""
在 ZeroGPU 分配后调用(位于 @spaces.GPU 函数体内):
- 若已能 import 或存在本地 stamp,则直接返回
- 否则执行:
git clone https://github.com/ClementPinard/Pytorch-Correlation-extension.git
cd Pytorch-Correlation-extension && python setup.py install && cd ..
"""
# 1) 尝试直接导入
try:
import spatial_correlation_sampler # noqa: F401
return
except Exception:
pass
# 2) 之前成功过(打过 stamp)
if path.exists(_CORR_OK_STAMP):
return
repo_url = "https://github.com/ClementPinard/Pytorch-Correlation-extension.git"
workdir = tempfile.mkdtemp(prefix="corr_ext_")
repo_dir = path.join(workdir, "Pytorch-Correlation-extension")
try:
print("[INFO] Installing Pytorch-Correlation-extension ...")
# clone
subprocess.run(
["git", "clone", "--depth", "1", repo_url],
cwd=workdir, check=True
)
# build & install
subprocess.run(
[sys.executable, "setup.py", "install"],
cwd=repo_dir, check=True
)
# 验证
importlib.invalidate_caches()
import spatial_correlation_sampler # noqa: F401
# 打 stamp,避免下次重复
with open(_CORR_OK_STAMP, "w") as f:
f.write("ok")
print("[INFO] Pytorch-Correlation-extension installed successfully.")
except subprocess.CalledProcessError as e:
print(f"[WARN] Failed to build/install correlation extension: {e}")
print("You can still proceed if your pipeline doesn't use it.")
except Exception as e:
print(f"[WARN] Correlation extension install check failed: {e}")
finally:
# 清理临时目录
try:
shutil.rmtree(workdir, ignore_errors=True)
except Exception:
pass
# ----------------- GRADIO HANDLER -----------------
@spaces.GPU(duration=600) # 确保 CUDA 初始化在此函数体内
def gradio_infer(
debug_shapes,
bw_video, ref_image,
first_not_exemplar, dataset, split, save_all, benchmark,
disable_long_term, max_mid, min_mid, max_long,
num_proto, top_k, mem_every, deep_update,
save_scores, flip, size, reverse
):
# <<< ZeroGPU 分配后:按需安装 Pytorch-Correlation-extension >>>
ensure_correlation_extension_installed()
# --------------------------------------------------------------
# 1) 基本校验与临时目录
if bw_video is None:
return None, "请上传黑白视频 / Please upload a B&W video."
if ref_image is None:
return None, "请上传参考图像 / Please upload a reference image."
reset_temp_root()
# 2) 解析视频源路径 & 目标 <video_stem>
if isinstance(bw_video, dict) and "name" in bw_video:
src_video_path = bw_video["name"]
elif isinstance(bw_video, str):
src_video_path = bw_video
else:
return None, "无法读取视频输入 / Failed to read video input."
video_stem = path.splitext(path.basename(src_video_path))[0]
# 3) 生成临时路径
input_root = path.join(TEMP_ROOT, INPUT_DIR) # _colormnet_tmp/input_video
ref_root = path.join(TEMP_ROOT, REF_DIR) # _colormnet_tmp/ref
output_root= path.join(TEMP_ROOT, OUTPUT_DIR) # _colormnet_tmp/output
input_frames_dir = path.join(input_root, video_stem)
ref_dir = path.join(ref_root, video_stem)
out_frames_dir = path.join(output_root, video_stem)
for d in (input_root, ref_root, output_root, input_frames_dir, ref_dir, out_frames_dir):
ensure_dir(d)
# 4) 抽帧 -> input_video/<stem>/
try:
_w, _h, fps, _n = video_to_frames_dir(src_video_path, input_frames_dir)
except Exception as e:
return None, f"抽帧失败 / Frame extraction failed:\n{e}"
# 5) 参考帧 -> ref/<stem>/ref.png
ref_png_path = path.join(ref_dir, "ref.png")
if isinstance(ref_image, Image.Image):
try:
ref_image.save(ref_png_path)
except Exception as e:
return None, f"保存参考图像失败 / Failed to save reference image:\n{e}"
elif isinstance(ref_image, str):
try:
shutil.copy2(ref_image, ref_png_path)
except Exception as e:
return None, f"复制参考图像失败 / Failed to copy reference image:\n{e}"
else:
return None, "无法读取参考图像输入 / Failed to read reference image."
# 6) 收集 UI 配置
default_config = {
"FirstFrameIsNotExemplar": True,
"dataset": "D16_batch",
"split": "val",
"save_all": True,
"benchmark": False,
"disable_long_term": False,
"max_mid_term_frames": 10,
"min_mid_term_frames": 5,
"max_long_term_elements": 10000,
"num_prototypes": 128,
"top_k": 30,
"mem_every": 5,
"deep_update_every": -1,
"save_scores": False,
"flip": False,
"size": -1,
"reverse": False,
}
user_config = {
"FirstFrameIsNotExemplar": bool(first_not_exemplar) if first_not_exemplar is not None else default_config["FirstFrameIsNotExemplar"],
"dataset": str(dataset) if dataset else default_config["dataset"],
"split": str(split) if split else default_config["split"],
"save_all": bool(save_all) if save_all is not None else default_config["save_all"],
"benchmark": bool(benchmark) if benchmark is not None else default_config["benchmark"],
"disable_long_term": bool(disable_long_term) if disable_long_term is not None else default_config["disable_long_term"],
"max_mid_term_frames": int(max_mid) if max_mid is not None else default_config["max_mid_term_frames"],
"min_mid_term_frames": int(min_mid) if min_mid is not None else default_config["min_mid_term_frames"],
"max_long_term_elements": int(max_long) if max_long is not None else default_config["max_long_term_elements"],
"num_prototypes": int(num_proto) if num_proto is not None else default_config["num_prototypes"],
"top_k": int(top_k) if top_k is not None else default_config["top_k"],
"mem_every": int(mem_every) if mem_every is not None else default_config["mem_every"],
"deep_update_every": int(deep_update) if deep_update is not None else default_config["deep_update_every"],
"save_scores": bool(save_scores) if save_scores is not None else default_config["save_scores"],
"flip": bool(flip) if flip is not None else default_config["flip"],
"size": int(size) if size is not None else default_config["size"],
"reverse": bool(reverse) if reverse is not None else default_config["reverse"],
}
# 7) 预下载权重(可选)
ensure_checkpoint()
# 8) 同进程调用 test.py
try:
import test # 确保 test.py 同目录且提供 run_cli(args_list)
except Exception as e:
return None, f"导入 test.py 失败 / Failed to import test.py:\n{e}"
args_list = build_args_list_for_test(
d16_batch_path=input_root, # 指向 input_video 根
out_path=output_root, # 指向 output 根(test.py 写 output/<stem>/*.png)
ref_root=ref_root, # 指向 ref 根(test.py 读 ref/<stem>/ref.png)
cfg=user_config
)
buf = io.StringIO()
try:
with redirect_stdout(buf), redirect_stderr(buf):
entry = getattr(test, "run_cli", None)
if entry is None or not callable(entry):
raise RuntimeError("test.py 未提供可调用的 run_cli(args_list) 接口。")
entry(args_list)
log = f"Args: {' '.join(args_list)}\n\n{buf.getvalue()}"
except Exception as e:
log = f"Args: {' '.join(args_list)}\n\n{buf.getvalue()}\n\nERROR: {e}"
return None, log
# 在合成 mp4 之前:清空 CUDA(防止显存占用)
try:
torch.cuda.synchronize()
except Exception:
pass
try:
torch.cuda.empty_cache()
except Exception:
pass
# 9) 合成 mp4:从 output/<stem>/ 帧合成 -> TEMP_ROOT/<stem>.mp4
out_frames = path.join(output_root, video_stem)
if not path.isdir(out_frames):
return None, f"未找到输出帧目录 / Output frame dir not found:{out_frames}\n\n{log}"
final_mp4 = path.abspath(path.join(TEMP_ROOT, f"{video_stem}.mp4"))
try:
encode_frames_to_video(out_frames, final_mp4, fps=fps)
except Exception as e:
return None, f"合成视频失败 / Video mux failed:\n{e}\n\n{log}"
return final_mp4, f"完成 ✅ / Done ✅\n\n{log}"
# ----------------- UI -----------------
with gr.Blocks() as demo:
gr.Markdown(f"# {TITLE}")
gr.HTML(BADGES_HTML)
gr.Markdown(PAPER)
gr.Markdown(DESC)
# 参考帧制作指南(中英双语,无裁剪步骤)
with gr.Accordion("参考帧制作指南 / Reference Frame Guide", open=False):
gr.Markdown(REF_GUIDE_MD)
debug_shapes = gr.Checkbox(label="调试日志 / Debug Logs(仅用于显示更完整日志 / show verbose logs)", value=False)
with gr.Row():
inp_video = gr.Video(label="黑白视频(mp4/webm/avi) / B&W Video", interactive=True)
inp_ref = gr.Image(label="参考图像(RGB) / Reference Image (RGB)", type="pil")
gr.Examples(
label="示例 / Examples",
examples=[["./example/4.mp4", "./example/4.png"]],
inputs=[inp_video, inp_ref],
cache_examples=False,
)
with gr.Accordion("高级参数设置 / Advanced Settings(传给 test.py / passed to test.py)", open=False):
with gr.Row():
first_not_exemplar = gr.Checkbox(label="FirstFrameIsNotExemplar (--FirstFrameIsNotExemplar)", value=True)
reverse = gr.Checkbox(label="reverse (--reverse)", value=False)
dataset = gr.Textbox(label="dataset (--dataset)", value="D16_batch")
split = gr.Textbox(label="split (--split)", value="val")
save_all = gr.Checkbox(label="save_all (--save_all)", value=True)
benchmark = gr.Checkbox(label="benchmark (--benchmark)", value=False)
with gr.Row():
disable_long_term = gr.Checkbox(label="disable_long_term (--disable_long_term)", value=False)
max_mid = gr.Number(label="max_mid_term_frames (--max_mid_term_frames)", value=10, precision=0)
min_mid = gr.Number(label="min_mid_term_frames (--min_mid_term_frames)", value=5, precision=0)
max_long = gr.Number(label="max_long_term_elements (--max_long_term_elements)", value=10000, precision=0)
num_proto = gr.Number(label="num_prototypes (--num_prototypes)", value=128, precision=0)
with gr.Row():
top_k = gr.Number(label="top_k (--top_k)", value=30, precision=0)
mem_every = gr.Number(label="mem_every (--mem_every)", value=5, precision=0)
deep_update = gr.Number(label="deep_update_every (--deep_update_every)", value=-1, precision=0)
save_scores = gr.Checkbox(label="save_scores (--save_scores)", value=False)
flip = gr.Checkbox(label="flip (--flip)", value=False)
size = gr.Number(label="size (--size)", value=-1, precision=0)
run_btn = gr.Button("开始着色 / Start Coloring")
with gr.Row():
out_video = gr.Video(label="输出视频(着色结果) / Output (Colorized)", autoplay=True)
status = gr.Textbox(label="状态 / 日志输出 / Status & Logs", interactive=False, lines=16)
run_btn.click(
fn=gradio_infer,
inputs=[
debug_shapes,
inp_video, inp_ref,
first_not_exemplar, dataset, split, save_all, benchmark,
disable_long_term, max_mid, min_mid, max_long,
num_proto, top_k, mem_every, deep_update,
save_scores, flip, size, reverse
],
outputs=[out_video, status]
)
gr.HTML("<hr/>")
gr.HTML(BADGES_HTML)
if __name__ == "__main__":
try:
ensure_checkpoint()
except Exception as e:
print(f"[WARN] 预下载权重失败(首次推理会再试): {e}")
demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860)
|