Spaces:
Configuration error
Configuration error
File size: 11,874 Bytes
95257c4 d01f62c 95257c4 d01f62c 95257c4 d01f62c 95257c4 d01f62c 95257c4 d01f62c 95257c4 d01f62c 95257c4 d01f62c 95257c4 d01f62c 95257c4 d01f62c 95257c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# test.py — In-process callable version (for ZeroGPU stateless)
# Keep original logic; add build_parser(), run_cli(args_list), and run_inference(args)
# Do NOT initialize CUDA at import-time.
import os
from os import path
from argparse import ArgumentParser
import shutil
# 不在这里做 @spaces.GPU 装饰,避免与 app.py 的 @spaces.GPU 双重调度
# import spaces
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
from PIL import Image
from inference.data.test_datasets import DAVISTestDataset_221128_TransColorization_batch
from inference.data.mask_mapper import MaskMapper
from model.network import ColorMNet
from inference.inference_core import InferenceCore
from progressbar import progressbar
from dataset.range_transform import inv_im_trans, inv_lll2rgb_trans
from skimage import color, io
import cv2
try:
import hickle as hkl
except ImportError:
print('Failed to import hickle. Fine if not using multi-scale testing.')
# ----------------- small utils -----------------
def detach_to_cpu(x):
return x.detach().cpu()
def tensor_to_np_float(image):
image_np = image.numpy().astype('float32')
return image_np
def lab2rgb_transform_PIL(mask):
mask_d = detach_to_cpu(mask)
mask_d = inv_lll2rgb_trans(mask_d)
im = tensor_to_np_float(mask_d)
if len(im.shape) == 3:
im = im.transpose((1, 2, 0))
else:
im = im[:, :, None]
im = color.lab2rgb(im)
return im.clip(0, 1)
# ----------------- argparse -----------------
def build_parser() -> ArgumentParser:
parser = ArgumentParser()
parser.add_argument('--model', default='saves/DINOv2FeatureV6_LocalAtten_s2_154000.pth')
parser.add_argument('--FirstFrameIsNotExemplar', help='Whether the provided reference frame is exactly the first input frame', action='store_true')
# dataset setting
parser.add_argument('--d16_batch_path', default='input', help='Point to folder A/ which contains <video_name>/00000.png etc.')
parser.add_argument('--ref_path', default='ref', help='Kept for parity; dataset will also read ref.png under each video folder when args provided')
parser.add_argument('--output', default='result', help='Directory to save results')
parser.add_argument('--reverse', default=False, action='store_true', help='whether to reverse the frame order')
parser.add_argument('--allow_resume', action='store_true',
help='skip existing videos that have been colorized')
# For generic (G) evaluation, point to a folder that contains "JPEGImages" and "Annotations"
parser.add_argument('--generic_path')
parser.add_argument('--dataset', help='D16/D17/Y18/Y19/LV1/LV3/G', default='D16_batch')
parser.add_argument('--split', help='val/test', default='val')
parser.add_argument('--save_all', action='store_true',
help='Save all frames. Useful only in YouTubeVOS/long-time video')
parser.add_argument('--benchmark', action='store_true', help='enable to disable amp for FPS benchmarking')
# Long-term memory options
parser.add_argument('--disable_long_term', action='store_true')
parser.add_argument('--max_mid_term_frames', help='T_max in paper, decrease to save memory', type=int, default=10)
parser.add_argument('--min_mid_term_frames', help='T_min in paper, decrease to save memory', type=int, default=5)
parser.add_argument('--max_long_term_elements', help='LT_max in paper, increase if objects disappear for a long time',
type=int, default=10000)
parser.add_argument('--num_prototypes', help='P in paper', type=int, default=128)
parser.add_argument('--top_k', type=int, default=30)
parser.add_argument('--mem_every', help='r in paper. Increase to improve running speed.', type=int, default=5)
parser.add_argument('--deep_update_every', help='Leave -1 normally to synchronize with mem_every', type=int, default=-1)
# Multi-scale options
parser.add_argument('--save_scores', action='store_true')
parser.add_argument('--flip', action='store_true')
parser.add_argument('--size', default=-1, type=int,
help='Resize the shorter side to this size. -1 to use original resolution. ')
return parser
# ----------------- core inference -----------------
def run_inference(args):
"""
真正的推理流程。必须在 ZeroGPU 的调度上下文里被调用(由 app.py 的 @spaces.GPU 包裹)。
不要在导入模块时做任何 CUDA 初始化。
"""
config = vars(args)
config['enable_long_term'] = not config['disable_long_term']
if args.output is None:
args.output = f'.output/{args.dataset}_{args.split}'
print(f'Output path not provided. Defaulting to {args.output}')
# ----- Data preparation -----
is_youtube = args.dataset.startswith('Y')
is_davis = args.dataset.startswith('D')
is_lv = args.dataset.startswith('LV')
if is_youtube or args.save_scores:
out_path = path.join(args.output, 'Annotations')
else:
out_path = args.output
if args.split != 'val':
raise NotImplementedError('Only split=val is supported in this script.')
# 数据集:支持 A/<video>/00000.png ... 且读取 A/<video>/ref.png
meta_dataset = DAVISTestDataset_221128_TransColorization_batch(
args.d16_batch_path, imset=args.ref_path, size=args.size, args=args
)
palette = None # 兼容保留
torch.autograd.set_grad_enabled(False)
# Set up loader list (video readers)
meta_loader = meta_dataset.get_datasets()
# Load checkpoint/model
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
network = ColorMNet(config, args.model).to(device).eval()
if args.model is not None:
# map_location 不指定,按默认走(ZeroGPU 下会在被调度的设备上加载)
model_weights = torch.load(args.model, map_location=device)
network.load_weights(model_weights, init_as_zero_if_needed=True)
else:
print('No model loaded.')
total_process_time = 0.0
total_frames = 0
# ----- Start eval over videos -----
for vid_reader in progressbar(meta_loader, max_value=len(meta_dataset), redirect_stdout=True):
# 注意:ZeroGPU/Spaces 环境不允许子进程多线程加载,保持 num_workers=0
loader = DataLoader(vid_reader, batch_size=1, shuffle=False, num_workers=0, pin_memory=False)
vid_name = vid_reader.vid_name
vid_length = len(loader)
# LT usage check per original logic
config['enable_long_term_count_usage'] = (
config['enable_long_term'] and
(vid_length
/ (config['max_mid_term_frames'] - config['min_mid_term_frames'])
* config['num_prototypes'])
>= config['max_long_term_elements']
)
mapper = MaskMapper()
processor = InferenceCore(network, config=config)
first_mask_loaded = False
# skip existing videos
if args.allow_resume:
this_out_path = path.join(out_path, vid_name)
if path.exists(this_out_path):
print(f'Skipping {this_out_path} because output already exists.')
continue
for ti, data in enumerate(loader):
with torch.cuda.amp.autocast(enabled=not args.benchmark):
rgb = data['rgb'].to(device)[0]
msk = data.get('mask')
if not config['FirstFrameIsNotExemplar']:
msk = msk[:, 1:3, :, :] if msk is not None else None
info = data['info']
frame = info['frame'][0]
shape = info['shape']
need_resize = info['need_resize'][0]
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
# 第一次必须有 mask
if not first_mask_loaded:
if msk is not None:
first_mask_loaded = True
else:
continue
if args.flip:
rgb = torch.flip(rgb, dims=[-1])
msk = torch.flip(msk, dims=[-1]) if msk is not None else None
# Map possibly non-continuous labels to continuous ones
if msk is not None:
msk = torch.Tensor(msk[0]).to(device)
if need_resize:
msk = vid_reader.resize_mask(msk.unsqueeze(0))[0]
processor.set_all_labels(list(range(1, 3)))
labels = range(1, 3)
else:
labels = None
# Run the model on this frame
if config['FirstFrameIsNotExemplar']:
prob = processor.step_AnyExemplar(
rgb,
msk[:1, :, :].repeat(3, 1, 1) if msk is not None else None,
msk[1:3, :, :] if msk is not None else None,
labels,
end=(ti == vid_length - 1)
)
else:
prob = processor.step(rgb, msk, labels, end=(ti == vid_length - 1))
# Upsample to original size if needed
if need_resize:
prob = F.interpolate(prob.unsqueeze(1), shape, mode='bilinear', align_corners=False)[:, 0]
end.record()
torch.cuda.synchronize()
total_process_time += (start.elapsed_time(end)/1000)
total_frames += 1
if args.flip:
prob = torch.flip(prob, dims=[-1])
if args.save_scores:
prob = (prob.detach().cpu().numpy() * 255).astype(np.uint8)
# Save the mask
if args.save_all or info['save'][0]:
this_out_path = path.join(out_path, vid_name)
os.makedirs(this_out_path, exist_ok=True)
out_mask_final = lab2rgb_transform_PIL(torch.cat([rgb[:1, :, :], prob], dim=0))
out_mask_final = (out_mask_final * 255).astype(np.uint8)
out_img = Image.fromarray(out_mask_final)
out_img.save(os.path.join(this_out_path, frame[:-4] + '.png'))
print(f'Total processing time: {total_process_time}')
print(f'Total processed frames: {total_frames}')
print(f'FPS: {total_frames / total_process_time}')
print(f'Max allocated memory (MB): {torch.cuda.max_memory_allocated() / (2**20)}')
# 与原版一致:只在 save_scores=False 且特定数据集/子集时打 zip
if not args.save_scores:
if is_youtube:
print('Making zip for YouTubeVOS...')
shutil.make_archive(path.join(args.output, path.basename(args.output)), 'zip', args.output, 'Annotations')
elif is_davis and args.split == 'test':
print('Making zip for DAVIS test-dev...')
shutil.make_archive(args.output, 'zip', args.output)
# ----------------- public entrypoints -----------------
def run_cli(args_list=None):
"""
供 app.py 同进程调用:test.run_cli(args_list)
"""
parser = build_parser()
args = parser.parse_args(args_list)
return run_inference(args)
def main():
"""
保留命令行可运行:python test.py --d16_batch_path A --output result ...
注意:若在 Hugging Face Spaces/ZeroGPU 无状态环境下直接 run main(),
需要由上层(如 app.py 的 @spaces.GPU)提供调度上下文。
"""
run_cli()
if __name__ == '__main__':
main()
|