Spaces:
Sleeping
Sleeping
| from flask import Flask, request, jsonify | |
| from langchain_community.llms import LlamaCpp | |
| from sentence_transformers import SentenceTransformer | |
| from transformers import AutoModel | |
| import torch | |
| from torch.nn.functional import cosine_similarity | |
| import os | |
| app = Flask(__name__) | |
| n_gpu_layers = 0 | |
| n_batch = 1024 | |
| llm = LlamaCpp( | |
| model_path="Phi-3-mini-4k-instruct-q4.gguf", # path to GGUF file | |
| temperature=0.1, | |
| n_gpu_layers=n_gpu_layers, | |
| n_batch=n_batch, | |
| verbose=True, | |
| n_ctx=4096 | |
| ) | |
| model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2') | |
| model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2') | |
| file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf') | |
| print("model size ====> :", file_size.st_size, "bytes") | |
| def get_skills(): | |
| cv_body = request.json.get('cv_body') | |
| # Simple inference example | |
| output = llm( | |
| f"<|user|>\n{cv_body}<|end|>\n<|assistant|>Can you list the skills mentioned in the CV?<|end|>", | |
| max_tokens=256, # Generate up to 256 tokens | |
| stop=["<|end|>"], | |
| echo=True, # Whether to echo the prompt | |
| ) | |
| return jsonify({'skills': output}) | |
| def health(): | |
| return jsonify({'status': 'Worked'}) | |
| def compare(): | |
| jobs_skill = request.json.get('job_skills') | |
| employee_skills = request.json.get('employee_skills') | |
| # Validation | |
| if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills): | |
| raise ValueError("jobs_skills must be a list of strings") | |
| # Encoding skills into embeddings | |
| employee_embeddings = model.encode(employee_skills) | |
| job_embeddings = model.encode(job_skills) | |
| # Computing cosine similarity between employee skills and each job | |
| similarity_scores = [] | |
| employee_embeddings_tensor = torch.from_numpy(employee_embeddings).unsqueeze(0) | |
| for i, job_e in enumerate(job_embeddings): | |
| job_e_tensor = torch.from_numpy(job_e).unsqueeze(0) | |
| similarity_score = cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1) | |
| similarity_scores.append({"job": jobs_skills[i], "similarity_score": similarity_score.item()}) | |
| return jsonify(similarity_scores) | |
| if __name__ == '__main__': | |
| app.run() |