Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,14 +6,14 @@ import torch
|
|
| 6 |
import random
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
-
from
|
| 10 |
from diffusers import FluxTransformer2DModel
|
| 11 |
from diffusers.utils import load_image
|
| 12 |
|
| 13 |
from huggingface_hub import hf_hub_download
|
| 14 |
|
| 15 |
|
| 16 |
-
kontext_path = hf_hub_download(repo_id="diffusers/kontext", filename="
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
|
|
@@ -27,32 +27,32 @@ def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5
|
|
| 27 |
seed = random.randint(0, MAX_SEED)
|
| 28 |
|
| 29 |
input_image = input_image.convert("RGB")
|
| 30 |
-
original_width, original_height = input_image.size
|
| 31 |
|
| 32 |
-
if original_width >= original_height:
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
else:
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
|
| 41 |
-
input_image_resized = input_image.resize((new_width, new_height), Image.LANCZOS)
|
| 42 |
image = pipe(
|
| 43 |
-
image=
|
| 44 |
prompt=prompt,
|
| 45 |
guidance_scale=guidance_scale,
|
| 46 |
-
width=new_width,
|
| 47 |
-
height=new_height,
|
| 48 |
generator=torch.Generator().manual_seed(seed),
|
| 49 |
).images[0]
|
| 50 |
-
return image, seed
|
| 51 |
|
| 52 |
css="""
|
| 53 |
#col-container {
|
| 54 |
margin: 0 auto;
|
| 55 |
-
max-width:
|
| 56 |
}
|
| 57 |
"""
|
| 58 |
|
|
@@ -62,46 +62,54 @@ with gr.Blocks(css=css) as demo:
|
|
| 62 |
gr.Markdown(f"""# FLUX.1 Kontext [dev]
|
| 63 |
""")
|
| 64 |
|
| 65 |
-
input_image = gr.Image(label="Upload the image for editing", type="pil")
|
| 66 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
result = gr.Image(label="Result", show_label=False)
|
| 79 |
|
| 80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 81 |
-
|
| 82 |
-
seed = gr.Slider(
|
| 83 |
-
label="Seed",
|
| 84 |
-
minimum=0,
|
| 85 |
-
maximum=MAX_SEED,
|
| 86 |
-
step=1,
|
| 87 |
-
value=0,
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 91 |
-
|
| 92 |
-
guidance_scale = gr.Slider(
|
| 93 |
-
label="Guidance Scale",
|
| 94 |
-
minimum=1,
|
| 95 |
-
maximum=10,
|
| 96 |
-
step=0.1,
|
| 97 |
-
value=2.5,
|
| 98 |
-
)
|
| 99 |
|
| 100 |
gr.on(
|
| 101 |
triggers=[run_button.click, prompt.submit],
|
| 102 |
fn = infer,
|
| 103 |
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale],
|
| 104 |
-
outputs = [result, seed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
demo.launch()
|
|
|
|
| 6 |
import random
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
+
from pipeline_flux_kontext import FluxKontextPipeline
|
| 10 |
from diffusers import FluxTransformer2DModel
|
| 11 |
from diffusers.utils import load_image
|
| 12 |
|
| 13 |
from huggingface_hub import hf_hub_download
|
| 14 |
|
| 15 |
|
| 16 |
+
kontext_path = hf_hub_download(repo_id="diffusers/kontext-v2", filename="dev-opt-2-a-3.safetensors")
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
|
|
|
|
| 27 |
seed = random.randint(0, MAX_SEED)
|
| 28 |
|
| 29 |
input_image = input_image.convert("RGB")
|
| 30 |
+
# original_width, original_height = input_image.size
|
| 31 |
|
| 32 |
+
# if original_width >= original_height:
|
| 33 |
+
# new_width = 1024
|
| 34 |
+
# new_height = int(original_height * (new_width / original_width))
|
| 35 |
+
# new_height = round(new_height / 64) * 64
|
| 36 |
+
# else:
|
| 37 |
+
# new_height = 1024
|
| 38 |
+
# new_width = int(original_width * (new_height / original_height))
|
| 39 |
+
# new_width = round(new_width / 64) * 64
|
| 40 |
|
| 41 |
+
#input_image_resized = input_image.resize((new_width, new_height), Image.LANCZOS)
|
| 42 |
image = pipe(
|
| 43 |
+
image=input_image,
|
| 44 |
prompt=prompt,
|
| 45 |
guidance_scale=guidance_scale,
|
| 46 |
+
# width=new_width,
|
| 47 |
+
# height=new_height,
|
| 48 |
generator=torch.Generator().manual_seed(seed),
|
| 49 |
).images[0]
|
| 50 |
+
return image, seed, gr.update(visible=True)
|
| 51 |
|
| 52 |
css="""
|
| 53 |
#col-container {
|
| 54 |
margin: 0 auto;
|
| 55 |
+
max-width: 960px;
|
| 56 |
}
|
| 57 |
"""
|
| 58 |
|
|
|
|
| 62 |
gr.Markdown(f"""# FLUX.1 Kontext [dev]
|
| 63 |
""")
|
| 64 |
|
|
|
|
| 65 |
with gr.Row():
|
| 66 |
+
with gr.Column():
|
| 67 |
+
input_image = gr.Image(label="Upload the image for editing", type="pil")
|
| 68 |
+
with gr.Row():
|
| 69 |
+
prompt = gr.Text(
|
| 70 |
+
label="Prompt",
|
| 71 |
+
show_label=False,
|
| 72 |
+
max_lines=1,
|
| 73 |
+
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
|
| 74 |
+
container=False,
|
| 75 |
+
)
|
| 76 |
+
run_button = gr.Button("Run", scale=0)
|
| 77 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 78 |
|
| 79 |
+
seed = gr.Slider(
|
| 80 |
+
label="Seed",
|
| 81 |
+
minimum=0,
|
| 82 |
+
maximum=MAX_SEED,
|
| 83 |
+
step=1,
|
| 84 |
+
value=0,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 88 |
+
|
| 89 |
+
guidance_scale = gr.Slider(
|
| 90 |
+
label="Guidance Scale",
|
| 91 |
+
minimum=1,
|
| 92 |
+
maximum=10,
|
| 93 |
+
step=0.1,
|
| 94 |
+
value=2.5,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
with gr.Column():
|
| 98 |
+
result = gr.Image(label="Result", show_label=False, interactive=False)
|
| 99 |
+
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 100 |
|
|
|
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
gr.on(
|
| 104 |
triggers=[run_button.click, prompt.submit],
|
| 105 |
fn = infer,
|
| 106 |
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale],
|
| 107 |
+
outputs = [result, seed, reuse_button]
|
| 108 |
+
)
|
| 109 |
+
reuse_button.click(
|
| 110 |
+
fn = lambda image: image,
|
| 111 |
+
inputs = [result],
|
| 112 |
+
outputs = [input_image]
|
| 113 |
)
|
| 114 |
|
| 115 |
demo.launch()
|