Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -61,11 +61,6 @@ canny = CannyDetector()
|
|
| 61 |
anyline = AnylineDetector.from_pretrained("TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline")
|
| 62 |
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
| 63 |
|
| 64 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 65 |
-
pipe.vae.enable_tiling()
|
| 66 |
-
pipe.vae.enable_slicing()
|
| 67 |
-
pipe.enable_model_cpu_offload() # for saving memory
|
| 68 |
-
|
| 69 |
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
| 70 |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 71 |
|
|
@@ -147,7 +142,7 @@ def resize_img(input_image, max_side=1024, min_side=768, size=None,
|
|
| 147 |
|
| 148 |
@spaces.GPU(duration=180)
|
| 149 |
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, control_guidance_end, seed, progress=gr.Progress(track_tqdm=True)):
|
| 150 |
-
|
| 151 |
if cond_in is None:
|
| 152 |
if image_in is not None:
|
| 153 |
image_in = resize_img(load_image(image_in))
|
|
@@ -165,7 +160,8 @@ def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mo
|
|
| 165 |
control_image = resize_img(load_image(cond_in))
|
| 166 |
|
| 167 |
width, height = control_image.size
|
| 168 |
-
|
|
|
|
| 169 |
image = pipe(
|
| 170 |
prompt,
|
| 171 |
control_image=[control_image],
|
|
@@ -177,8 +173,7 @@ def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mo
|
|
| 177 |
guidance_scale=guidance_scale,
|
| 178 |
generator=torch.manual_seed(seed),
|
| 179 |
).images[0]
|
| 180 |
-
|
| 181 |
-
torch.cuda.empty_cache()
|
| 182 |
|
| 183 |
return image, control_image, gr.update(visible=True)
|
| 184 |
|
|
|
|
| 61 |
anyline = AnylineDetector.from_pretrained("TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline")
|
| 62 |
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
| 65 |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 66 |
|
|
|
|
| 142 |
|
| 143 |
@spaces.GPU(duration=180)
|
| 144 |
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, control_guidance_end, seed, progress=gr.Progress(track_tqdm=True)):
|
| 145 |
+
print('infer')
|
| 146 |
if cond_in is None:
|
| 147 |
if image_in is not None:
|
| 148 |
image_in = resize_img(load_image(image_in))
|
|
|
|
| 160 |
control_image = resize_img(load_image(cond_in))
|
| 161 |
|
| 162 |
width, height = control_image.size
|
| 163 |
+
|
| 164 |
+
print('pipe ...')
|
| 165 |
image = pipe(
|
| 166 |
prompt,
|
| 167 |
control_image=[control_image],
|
|
|
|
| 173 |
guidance_scale=guidance_scale,
|
| 174 |
generator=torch.manual_seed(seed),
|
| 175 |
).images[0]
|
| 176 |
+
print('pipe DONE')
|
|
|
|
| 177 |
|
| 178 |
return image, control_image, gr.update(visible=True)
|
| 179 |
|