Spaces:
Running
on
Zero
Running
on
Zero
| from datetime import datetime | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import FluxPipeline | |
| from optimization import optimize_pipeline_ | |
| pipeline = FluxPipeline.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda') | |
| optimize_pipeline_(pipeline, "prompt") | |
| def generate_image(prompt: str, progress=gr.Progress(track_tqdm=True)): | |
| generator = torch.Generator(device='cuda').manual_seed(42) | |
| t0 = datetime.now() | |
| output = pipeline( | |
| prompt=prompt, | |
| num_inference_steps=28, | |
| generator=generator, | |
| ) | |
| return [(output.images[0], f'{(datetime.now() - t0).total_seconds():.2f}s')] | |
| gr.Interface( | |
| fn=generate_image, | |
| inputs=gr.Text(label="Prompt"), | |
| outputs=gr.Gallery(), | |
| examples=["A cat playing with a ball of yarn"], | |
| cache_examples=False, | |
| ).launch() | |