Spaces:
Running
on
Zero
Running
on
Zero
update optimization
Browse files- optimization.py +21 -45
optimization.py
CHANGED
|
@@ -14,18 +14,21 @@ from torchao.quantization import Int8WeightOnlyConfig
|
|
| 14 |
|
| 15 |
from optimization_utils import capture_component_call
|
| 16 |
from optimization_utils import aoti_compile
|
| 17 |
-
from optimization_utils import ZeroGPUCompiledModel
|
| 18 |
from optimization_utils import drain_module_parameters
|
| 19 |
|
| 20 |
|
| 21 |
P = ParamSpec('P')
|
| 22 |
|
|
|
|
| 23 |
|
| 24 |
-
|
|
|
|
| 25 |
|
| 26 |
TRANSFORMER_DYNAMIC_SHAPES = {
|
| 27 |
'hidden_states': {
|
| 28 |
-
2:
|
|
|
|
|
|
|
| 29 |
},
|
| 30 |
}
|
| 31 |
|
|
@@ -44,6 +47,7 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
| 44 |
@spaces.GPU(duration=1500)
|
| 45 |
def compile_transformer():
|
| 46 |
|
|
|
|
| 47 |
pipeline.load_lora_weights(
|
| 48 |
"Kijai/WanVideo_comfy",
|
| 49 |
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
|
@@ -70,61 +74,33 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
| 70 |
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
| 71 |
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
if hidden_states.shape[-1] > hidden_states.shape[-2]:
|
| 76 |
-
hidden_states_landscape = hidden_states
|
| 77 |
-
hidden_states_portrait = hidden_states_transposed
|
| 78 |
-
else:
|
| 79 |
-
hidden_states_landscape = hidden_states_transposed
|
| 80 |
-
hidden_states_portrait = hidden_states
|
| 81 |
-
|
| 82 |
-
exported_landscape_1 = torch.export.export(
|
| 83 |
mod=pipeline.transformer,
|
| 84 |
args=call.args,
|
| 85 |
-
kwargs=call.kwargs
|
| 86 |
dynamic_shapes=dynamic_shapes,
|
| 87 |
)
|
| 88 |
|
| 89 |
-
|
| 90 |
mod=pipeline.transformer_2,
|
| 91 |
args=call.args,
|
| 92 |
-
kwargs=call.kwargs
|
| 93 |
dynamic_shapes=dynamic_shapes,
|
| 94 |
)
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
compiled_landscape_2 = ZeroGPUCompiledModel(compiled_landscape_1.archive_file, compiled_portrait_2.weights)
|
| 100 |
-
compiled_portrait_1 = ZeroGPUCompiledModel(compiled_portrait_2.archive_file, compiled_landscape_1.weights)
|
| 101 |
-
|
| 102 |
-
return (
|
| 103 |
-
compiled_landscape_1,
|
| 104 |
-
compiled_landscape_2,
|
| 105 |
-
compiled_portrait_1,
|
| 106 |
-
compiled_portrait_2,
|
| 107 |
-
)
|
| 108 |
|
| 109 |
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
if hidden_states.shape[-1] > hidden_states.shape[-2]:
|
| 115 |
-
return cl1(*args, **kwargs)
|
| 116 |
-
else:
|
| 117 |
-
return cp1(*args, **kwargs)
|
| 118 |
-
|
| 119 |
-
def combined_transformer_2(*args, **kwargs):
|
| 120 |
-
hidden_states: torch.Tensor = kwargs['hidden_states']
|
| 121 |
-
if hidden_states.shape[-1] > hidden_states.shape[-2]:
|
| 122 |
-
return cl2(*args, **kwargs)
|
| 123 |
-
else:
|
| 124 |
-
return cp2(*args, **kwargs)
|
| 125 |
-
|
| 126 |
-
pipeline.transformer.forward = combined_transformer_1
|
| 127 |
drain_module_parameters(pipeline.transformer)
|
| 128 |
|
| 129 |
-
pipeline.transformer_2.forward =
|
| 130 |
drain_module_parameters(pipeline.transformer_2)
|
|
|
|
| 14 |
|
| 15 |
from optimization_utils import capture_component_call
|
| 16 |
from optimization_utils import aoti_compile
|
|
|
|
| 17 |
from optimization_utils import drain_module_parameters
|
| 18 |
|
| 19 |
|
| 20 |
P = ParamSpec('P')
|
| 21 |
|
| 22 |
+
LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81)
|
| 23 |
|
| 24 |
+
LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52)
|
| 25 |
+
LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52)
|
| 26 |
|
| 27 |
TRANSFORMER_DYNAMIC_SHAPES = {
|
| 28 |
'hidden_states': {
|
| 29 |
+
2: LATENT_FRAMES_DIM,
|
| 30 |
+
3: 2 * LATENT_PATCHED_HEIGHT_DIM,
|
| 31 |
+
4: 2 * LATENT_PATCHED_WIDTH_DIM,
|
| 32 |
},
|
| 33 |
}
|
| 34 |
|
|
|
|
| 47 |
@spaces.GPU(duration=1500)
|
| 48 |
def compile_transformer():
|
| 49 |
|
| 50 |
+
# This LoRA fusion part remains the same
|
| 51 |
pipeline.load_lora_weights(
|
| 52 |
"Kijai/WanVideo_comfy",
|
| 53 |
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
|
|
|
| 74 |
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
| 75 |
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
|
| 76 |
|
| 77 |
+
|
| 78 |
+
exported_1 = torch.export.export(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
mod=pipeline.transformer,
|
| 80 |
args=call.args,
|
| 81 |
+
kwargs=call.kwargs,
|
| 82 |
dynamic_shapes=dynamic_shapes,
|
| 83 |
)
|
| 84 |
|
| 85 |
+
exported_2 = torch.export.export(
|
| 86 |
mod=pipeline.transformer_2,
|
| 87 |
args=call.args,
|
| 88 |
+
kwargs=call.kwargs,
|
| 89 |
dynamic_shapes=dynamic_shapes,
|
| 90 |
)
|
| 91 |
|
| 92 |
+
compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS)
|
| 93 |
+
compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS)
|
| 94 |
+
|
| 95 |
+
return compiled_1, compiled_2
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
|
| 99 |
+
|
| 100 |
+
compiled_transformer_1, compiled_transformer_2 = compile_transformer()
|
| 101 |
+
|
| 102 |
+
pipeline.transformer.forward = compiled_transformer_1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
drain_module_parameters(pipeline.transformer)
|
| 104 |
|
| 105 |
+
pipeline.transformer_2.forward = compiled_transformer_2
|
| 106 |
drain_module_parameters(pipeline.transformer_2)
|