Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Update app.py (#2)
Browse files- Update app.py (cea01700bf2260c5aacdd47f80e0e5810abb0cde)
- Update optimization.py (201ea86637fa9ad7fb65d35aa467abe396108f3c)
- app.py +82 -37
- optimization.py +17 -0
    	
        app.py
    CHANGED
    
    | @@ -13,19 +13,22 @@ import tempfile | |
| 13 | 
             
            import numpy as np
         | 
| 14 | 
             
            from PIL import Image
         | 
| 15 | 
             
            import random
         | 
| 16 | 
            -
             | 
| 17 | 
             
            from optimization import optimize_pipeline_
         | 
| 18 |  | 
| 19 |  | 
| 20 | 
            -
            MODEL_ID = "Wan-AI/Wan2.2- | 
| 21 |  | 
| 22 | 
             
            LANDSCAPE_WIDTH = 832
         | 
| 23 | 
             
            LANDSCAPE_HEIGHT = 480
         | 
| 24 | 
             
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 25 |  | 
| 26 | 
            -
            FIXED_FPS =  | 
| 27 | 
             
            MIN_FRAMES_MODEL = 8
         | 
| 28 | 
            -
            MAX_FRAMES_MODEL =  | 
|  | |
|  | |
|  | |
| 29 |  | 
| 30 |  | 
| 31 | 
             
            pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
         | 
| @@ -42,6 +45,39 @@ pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, | |
| 42 | 
             
                torch_dtype=torch.bfloat16,
         | 
| 43 | 
             
            ).to('cuda')
         | 
| 44 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 45 |  | 
| 46 | 
             
            optimize_pipeline_(pipe,
         | 
| 47 | 
             
                image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
         | 
| @@ -53,7 +89,7 @@ optimize_pipeline_(pipe, | |
| 53 |  | 
| 54 |  | 
| 55 | 
             
            default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
         | 
| 56 | 
            -
            default_negative_prompt = " | 
| 57 |  | 
| 58 |  | 
| 59 | 
             
            def resize_image(image: Image.Image) -> Image.Image:
         | 
| @@ -82,8 +118,9 @@ def get_duration( | |
| 82 | 
             
                input_image,
         | 
| 83 | 
             
                prompt,
         | 
| 84 | 
             
                negative_prompt,
         | 
| 85 | 
            -
                 | 
| 86 | 
             
                guidance_scale,
         | 
|  | |
| 87 | 
             
                steps,
         | 
| 88 | 
             
                seed,
         | 
| 89 | 
             
                randomize_seed,
         | 
| @@ -96,29 +133,32 @@ def generate_video( | |
| 96 | 
             
                input_image,
         | 
| 97 | 
             
                prompt,
         | 
| 98 | 
             
                negative_prompt=default_negative_prompt,
         | 
| 99 | 
            -
                 | 
| 100 | 
            -
                guidance_scale =  | 
| 101 | 
            -
                 | 
|  | |
| 102 | 
             
                seed = 42,
         | 
| 103 | 
             
                randomize_seed = False,
         | 
| 104 | 
             
                progress=gr.Progress(track_tqdm=True),
         | 
| 105 | 
             
            ):
         | 
| 106 | 
             
                """
         | 
| 107 | 
            -
                Generate a video from an input image using the Wan 2. | 
| 108 |  | 
| 109 | 
             
                This function takes an input image and generates a video animation based on the provided
         | 
| 110 | 
            -
                prompt and parameters. It uses  | 
| 111 | 
            -
                for fast generation in  | 
| 112 |  | 
| 113 | 
             
                Args:
         | 
| 114 | 
             
                    input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
         | 
| 115 | 
             
                    prompt (str): Text prompt describing the desired animation or motion.
         | 
| 116 | 
             
                    negative_prompt (str, optional): Negative prompt to avoid unwanted elements. 
         | 
| 117 | 
             
                        Defaults to default_negative_prompt (contains unwanted visual artifacts).
         | 
| 118 | 
            -
                     | 
| 119 | 
            -
                        Defaults to MAX_FRAMES_MODEL
         | 
| 120 | 
             
                    guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
         | 
| 121 | 
             
                        Defaults to 1.0. Range: 0.0-20.0.
         | 
|  | |
|  | |
| 122 | 
             
                    steps (int, optional): Number of inference steps. More steps = higher quality but slower.
         | 
| 123 | 
             
                        Defaults to 4. Range: 1-30.
         | 
| 124 | 
             
                    seed (int, optional): Random seed for reproducible results. Defaults to 42.
         | 
| @@ -137,23 +177,27 @@ def generate_video( | |
| 137 |  | 
| 138 | 
             
                Note:
         | 
| 139 | 
             
                    - The function automatically resizes the input image to the target dimensions
         | 
|  | |
| 140 | 
             
                    - Output dimensions are adjusted to be multiples of MOD_VALUE (32)
         | 
| 141 | 
             
                    - The function uses GPU acceleration via the @spaces.GPU decorator
         | 
|  | |
| 142 | 
             
                """
         | 
| 143 | 
            -
                if input_image is None:
         | 
| 144 | 
            -
             | 
| 145 |  | 
|  | |
| 146 | 
             
                current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
         | 
| 147 | 
            -
                resized_image = resize_image(input_image)
         | 
| 148 |  | 
| 149 | 
             
                output_frames_list = pipe(
         | 
| 150 | 
            -
                    image=resized_image,
         | 
| 151 | 
             
                    prompt=prompt,
         | 
| 152 | 
             
                    negative_prompt=negative_prompt,
         | 
| 153 | 
            -
                    height= | 
| 154 | 
            -
                    width= | 
| 155 | 
             
                    num_frames=num_frames,
         | 
| 156 | 
             
                    guidance_scale=float(guidance_scale),
         | 
|  | |
| 157 | 
             
                    num_inference_steps=int(steps),
         | 
| 158 | 
             
                    generator=torch.Generator(device="cuda").manual_seed(current_seed),
         | 
| 159 | 
             
                ).frames[0]
         | 
| @@ -166,20 +210,21 @@ def generate_video( | |
| 166 | 
             
                return video_path, current_seed
         | 
| 167 |  | 
| 168 | 
             
            with gr.Blocks() as demo:
         | 
| 169 | 
            -
                gr.Markdown("# Fast  | 
| 170 | 
            -
                gr.Markdown(" | 
| 171 | 
             
                with gr.Row():
         | 
| 172 | 
             
                    with gr.Column():
         | 
| 173 | 
            -
                        input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
         | 
| 174 | 
             
                        prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
         | 
| 175 | 
            -
                         | 
| 176 |  | 
| 177 | 
             
                        with gr.Accordion("Advanced Settings", open=False):
         | 
| 178 | 
             
                            negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
         | 
| 179 | 
             
                            seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
         | 
| 180 | 
             
                            randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
         | 
| 181 | 
            -
                            steps_slider = gr.Slider(minimum=1, maximum= | 
| 182 | 
            -
                            guidance_scale_input = gr.Slider(minimum=0.0, maximum= | 
|  | |
| 183 |  | 
| 184 | 
             
                        generate_button = gr.Button("Generate Video", variant="primary")
         | 
| 185 | 
             
                    with gr.Column():
         | 
| @@ -187,20 +232,20 @@ with gr.Blocks() as demo: | |
| 187 |  | 
| 188 | 
             
                ui_inputs = [
         | 
| 189 | 
             
                    input_image_component, prompt_input,
         | 
| 190 | 
            -
                    negative_prompt_input,  | 
| 191 | 
            -
                    guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
         | 
| 192 | 
             
                ]
         | 
| 193 | 
             
                generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
         | 
| 194 |  | 
| 195 | 
            -
                gr.Examples(
         | 
| 196 | 
            -
             | 
| 197 | 
            -
             | 
| 198 | 
            -
             | 
| 199 | 
            -
             | 
| 200 | 
            -
             | 
| 201 | 
            -
             | 
| 202 | 
            -
             | 
| 203 | 
            -
                )
         | 
| 204 |  | 
| 205 | 
             
            if __name__ == "__main__":
         | 
| 206 | 
             
                demo.queue().launch(mcp_server=True)
         | 
|  | |
| 13 | 
             
            import numpy as np
         | 
| 14 | 
             
            from PIL import Image
         | 
| 15 | 
             
            import random
         | 
| 16 | 
            +
            import gc
         | 
| 17 | 
             
            from optimization import optimize_pipeline_
         | 
| 18 |  | 
| 19 |  | 
| 20 | 
            +
            MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
         | 
| 21 |  | 
| 22 | 
             
            LANDSCAPE_WIDTH = 832
         | 
| 23 | 
             
            LANDSCAPE_HEIGHT = 480
         | 
| 24 | 
             
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 25 |  | 
| 26 | 
            +
            FIXED_FPS = 16
         | 
| 27 | 
             
            MIN_FRAMES_MODEL = 8
         | 
| 28 | 
            +
            MAX_FRAMES_MODEL = 81
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
         | 
| 31 | 
            +
            MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
         | 
| 32 |  | 
| 33 |  | 
| 34 | 
             
            pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
         | 
|  | |
| 45 | 
             
                torch_dtype=torch.bfloat16,
         | 
| 46 | 
             
            ).to('cuda')
         | 
| 47 |  | 
| 48 | 
            +
            # load, fuse, unload before compilation
         | 
| 49 | 
            +
            # pipe.load_lora_weights(
         | 
| 50 | 
            +
            #    "vrgamedevgirl84/Wan14BT2VFusioniX", 
         | 
| 51 | 
            +
            #    weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", 
         | 
| 52 | 
            +
            #     adapter_name="phantom"
         | 
| 53 | 
            +
            # )
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            # pipe.set_adapters(["phantom"], adapter_weights=[0.95])
         | 
| 56 | 
            +
            # pipe.fuse_lora(adapter_names=["phantom"], lora_scale=1.0)
         | 
| 57 | 
            +
            # pipe.unload_lora_weights()
         | 
| 58 | 
            +
             | 
| 59 | 
            +
             | 
| 60 | 
            +
            # pipe.load_lora_weights(
         | 
| 61 | 
            +
            #    "vrgamedevgirl84/Wan14BT2VFusioniX", 
         | 
| 62 | 
            +
            #    weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", 
         | 
| 63 | 
            +
            #     adapter_name="phantom"
         | 
| 64 | 
            +
            # )
         | 
| 65 | 
            +
            # kwargs = {}
         | 
| 66 | 
            +
            # kwargs["load_into_transformer_2"] = True
         | 
| 67 | 
            +
            # pipe.load_lora_weights(
         | 
| 68 | 
            +
            #    "vrgamedevgirl84/Wan14BT2VFusioniX", 
         | 
| 69 | 
            +
            #    weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", 
         | 
| 70 | 
            +
            #     adapter_name="phantom_2", **kwargs
         | 
| 71 | 
            +
            # )
         | 
| 72 | 
            +
            # pipe.set_adapters(["phantom", "phantom_2"], adapter_weights=[1., 1.])
         | 
| 73 | 
            +
            # pipe.fuse_lora(adapter_names=["phantom"], lora_scale=3., components=["transformer"])
         | 
| 74 | 
            +
            # pipe.fuse_lora(adapter_names=["phantom_2"], lora_scale=1., components=["transformer_2"])
         | 
| 75 | 
            +
            # pipe.unload_lora_weights()
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            for i in range(3): 
         | 
| 78 | 
            +
                gc.collect()
         | 
| 79 | 
            +
                torch.cuda.synchronize() 
         | 
| 80 | 
            +
                torch.cuda.empty_cache()
         | 
| 81 |  | 
| 82 | 
             
            optimize_pipeline_(pipe,
         | 
| 83 | 
             
                image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
         | 
|  | |
| 89 |  | 
| 90 |  | 
| 91 | 
             
            default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
         | 
| 92 | 
            +
            default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
         | 
| 93 |  | 
| 94 |  | 
| 95 | 
             
            def resize_image(image: Image.Image) -> Image.Image:
         | 
|  | |
| 118 | 
             
                input_image,
         | 
| 119 | 
             
                prompt,
         | 
| 120 | 
             
                negative_prompt,
         | 
| 121 | 
            +
                duration_seconds,
         | 
| 122 | 
             
                guidance_scale,
         | 
| 123 | 
            +
                guidance_scale_2,
         | 
| 124 | 
             
                steps,
         | 
| 125 | 
             
                seed,
         | 
| 126 | 
             
                randomize_seed,
         | 
|  | |
| 133 | 
             
                input_image,
         | 
| 134 | 
             
                prompt,
         | 
| 135 | 
             
                negative_prompt=default_negative_prompt,
         | 
| 136 | 
            +
                duration_seconds = MAX_DURATION,
         | 
| 137 | 
            +
                guidance_scale = 1,
         | 
| 138 | 
            +
                guidance_scale_2 = 3,
         | 
| 139 | 
            +
                steps = 6,
         | 
| 140 | 
             
                seed = 42,
         | 
| 141 | 
             
                randomize_seed = False,
         | 
| 142 | 
             
                progress=gr.Progress(track_tqdm=True),
         | 
| 143 | 
             
            ):
         | 
| 144 | 
             
                """
         | 
| 145 | 
            +
                Generate a video from an input image using the Wan 2.2 14B I2V model with Phantom LoRA.
         | 
| 146 |  | 
| 147 | 
             
                This function takes an input image and generates a video animation based on the provided
         | 
| 148 | 
            +
                prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Phantom LoRA
         | 
| 149 | 
            +
                for fast generation in 6-8 steps.
         | 
| 150 |  | 
| 151 | 
             
                Args:
         | 
| 152 | 
             
                    input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
         | 
| 153 | 
             
                    prompt (str): Text prompt describing the desired animation or motion.
         | 
| 154 | 
             
                    negative_prompt (str, optional): Negative prompt to avoid unwanted elements. 
         | 
| 155 | 
             
                        Defaults to default_negative_prompt (contains unwanted visual artifacts).
         | 
| 156 | 
            +
                    duration_seconds (float, optional): Duration of the generated video in seconds.
         | 
| 157 | 
            +
                        Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
         | 
| 158 | 
             
                    guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
         | 
| 159 | 
             
                        Defaults to 1.0. Range: 0.0-20.0.
         | 
| 160 | 
            +
                    guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
         | 
| 161 | 
            +
                        Defaults to 1.0. Range: 0.0-20.0.
         | 
| 162 | 
             
                    steps (int, optional): Number of inference steps. More steps = higher quality but slower.
         | 
| 163 | 
             
                        Defaults to 4. Range: 1-30.
         | 
| 164 | 
             
                    seed (int, optional): Random seed for reproducible results. Defaults to 42.
         | 
|  | |
| 177 |  | 
| 178 | 
             
                Note:
         | 
| 179 | 
             
                    - The function automatically resizes the input image to the target dimensions
         | 
| 180 | 
            +
                    - Frame count is calculated as duration_seconds * FIXED_FPS (24)
         | 
| 181 | 
             
                    - Output dimensions are adjusted to be multiples of MOD_VALUE (32)
         | 
| 182 | 
             
                    - The function uses GPU acceleration via the @spaces.GPU decorator
         | 
| 183 | 
            +
                    - Generation time varies based on steps and duration (see get_duration function)
         | 
| 184 | 
             
                """
         | 
| 185 | 
            +
                # if input_image is None:
         | 
| 186 | 
            +
                #     raise gr.Error("Please upload an input image.")
         | 
| 187 |  | 
| 188 | 
            +
                num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
         | 
| 189 | 
             
                current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
         | 
| 190 | 
            +
                # resized_image = resize_image(input_image)
         | 
| 191 |  | 
| 192 | 
             
                output_frames_list = pipe(
         | 
| 193 | 
            +
                    #image=resized_image,
         | 
| 194 | 
             
                    prompt=prompt,
         | 
| 195 | 
             
                    negative_prompt=negative_prompt,
         | 
| 196 | 
            +
                    height=480,
         | 
| 197 | 
            +
                    width=832,
         | 
| 198 | 
             
                    num_frames=num_frames,
         | 
| 199 | 
             
                    guidance_scale=float(guidance_scale),
         | 
| 200 | 
            +
                    guidance_scale_2=float(guidance_scale_2),
         | 
| 201 | 
             
                    num_inference_steps=int(steps),
         | 
| 202 | 
             
                    generator=torch.Generator(device="cuda").manual_seed(current_seed),
         | 
| 203 | 
             
                ).frames[0]
         | 
|  | |
| 210 | 
             
                return video_path, current_seed
         | 
| 211 |  | 
| 212 | 
             
            with gr.Blocks() as demo:
         | 
| 213 | 
            +
                gr.Markdown("# Fast 6 steps Wan 2.2 I2V (14B) with Phantom LoRA")
         | 
| 214 | 
            +
                gr.Markdown("run Wan 2.2 in just 6-8 steps, with [FusionX Phantom LoRA by DeeJayT](https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/tree/main/FusionX_LoRa), compatible with 🧨 diffusers")
         | 
| 215 | 
             
                with gr.Row():
         | 
| 216 | 
             
                    with gr.Column():
         | 
| 217 | 
            +
                        input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)", visible=False)
         | 
| 218 | 
             
                        prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
         | 
| 219 | 
            +
                        duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
         | 
| 220 |  | 
| 221 | 
             
                        with gr.Accordion("Advanced Settings", open=False):
         | 
| 222 | 
             
                            negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
         | 
| 223 | 
             
                            seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
         | 
| 224 | 
             
                            randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
         | 
| 225 | 
            +
                            steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps") 
         | 
| 226 | 
            +
                            guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
         | 
| 227 | 
            +
                            guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3, label="Guidance Scale 2 - low noise stage")
         | 
| 228 |  | 
| 229 | 
             
                        generate_button = gr.Button("Generate Video", variant="primary")
         | 
| 230 | 
             
                    with gr.Column():
         | 
|  | |
| 232 |  | 
| 233 | 
             
                ui_inputs = [
         | 
| 234 | 
             
                    input_image_component, prompt_input,
         | 
| 235 | 
            +
                    negative_prompt_input, duration_seconds_input,
         | 
| 236 | 
            +
                    guidance_scale_input, guidance_scale_2_input, steps_slider, seed_input, randomize_seed_checkbox
         | 
| 237 | 
             
                ]
         | 
| 238 | 
             
                generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
         | 
| 239 |  | 
| 240 | 
            +
                # gr.Examples(
         | 
| 241 | 
            +
                #     examples=[ 
         | 
| 242 | 
            +
                #         [
         | 
| 243 | 
            +
                #             "wan_i2v_input.JPG",
         | 
| 244 | 
            +
                #             "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
         | 
| 245 | 
            +
                #         ],
         | 
| 246 | 
            +
                #     ],
         | 
| 247 | 
            +
                #     inputs=[input_image_component, prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
         | 
| 248 | 
            +
                # )
         | 
| 249 |  | 
| 250 | 
             
            if __name__ == "__main__":
         | 
| 251 | 
             
                demo.queue().launch(mcp_server=True)
         | 
    	
        optimization.py
    CHANGED
    
    | @@ -36,6 +36,23 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw | |
| 36 |  | 
| 37 | 
             
                @spaces.GPU(duration=1500)
         | 
| 38 | 
             
                def compile_transformer():
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 39 |  | 
| 40 | 
             
                    with capture_component_call(pipeline, 'transformer') as call:
         | 
| 41 | 
             
                        pipeline(*args, **kwargs)
         | 
|  | |
| 36 |  | 
| 37 | 
             
                @spaces.GPU(duration=1500)
         | 
| 38 | 
             
                def compile_transformer():
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                    pipeline.load_lora_weights(
         | 
| 41 | 
            +
                       "vrgamedevgirl84/Wan14BT2VFusioniX", 
         | 
| 42 | 
            +
                       weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", 
         | 
| 43 | 
            +
                        adapter_name="phantom"
         | 
| 44 | 
            +
                    )
         | 
| 45 | 
            +
                    kwargs_lora = {}
         | 
| 46 | 
            +
                    kwargs_lora["load_into_transformer_2"] = True
         | 
| 47 | 
            +
                    pipeline.load_lora_weights(
         | 
| 48 | 
            +
                       "vrgamedevgirl84/Wan14BT2VFusioniX", 
         | 
| 49 | 
            +
                       weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", 
         | 
| 50 | 
            +
                        adapter_name="phantom_2", **kwargs_lora
         | 
| 51 | 
            +
                    )
         | 
| 52 | 
            +
                    pipeline.set_adapters(["phantom", "phantom_2"], adapter_weights=[1., 1.])
         | 
| 53 | 
            +
                    pipeline.fuse_lora(adapter_names=["phantom"], lora_scale=3., components=["transformer"])
         | 
| 54 | 
            +
                    pipeline.fuse_lora(adapter_names=["phantom_2"], lora_scale=1., components=["transformer_2"])
         | 
| 55 | 
            +
                    pipeline.unload_lora_weights()
         | 
| 56 |  | 
| 57 | 
             
                    with capture_component_call(pipeline, 'transformer') as call:
         | 
| 58 | 
             
                        pipeline(*args, **kwargs)
         | 

