Spaces:
Build error
Build error
Update streamlitapp.py
Browse files- streamlitapp.py +195 -0
streamlitapp.py
CHANGED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import transformers
|
| 5 |
+
from transformers import AutoTokenizer,AutoModel
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
|
| 11 |
+
class BCNN(nn.Module):
|
| 12 |
+
def __init__(self, embedding_dim, output_dim,
|
| 13 |
+
dropout,bidirectional_units,conv_filters):
|
| 14 |
+
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.bert = AutoModel.from_pretrained('vinai/phobert-base-v2')
|
| 17 |
+
#.fc_input = nn.Linear(embedding_dim,embedding_dim)
|
| 18 |
+
self.bidirectional_lstm = nn.LSTM(
|
| 19 |
+
embedding_dim, bidirectional_units, bidirectional=True, batch_first=True
|
| 20 |
+
)
|
| 21 |
+
self.conv1 = nn.Conv1d(in_channels=2*bidirectional_units, out_channels=conv_filters[0], kernel_size=4)
|
| 22 |
+
self.conv2 = nn.Conv1d(in_channels=2*bidirectional_units, out_channels=conv_filters[1], kernel_size=5)
|
| 23 |
+
|
| 24 |
+
self.fc = nn.Linear(64, output_dim)
|
| 25 |
+
|
| 26 |
+
self.dropout = nn.Dropout(dropout)
|
| 27 |
+
|
| 28 |
+
def forward(self,b_input_ids,b_input_mask):
|
| 29 |
+
encoded = self.bert(b_input_ids,b_input_mask)[0]
|
| 30 |
+
embedded, _ = self.bidirectional_lstm(encoded)
|
| 31 |
+
embedded = embedded.permute(0, 2, 1)
|
| 32 |
+
conved_1 = F.relu(self.conv1(embedded))
|
| 33 |
+
conved_2 = F.relu(self.conv2(embedded))
|
| 34 |
+
#conved_n = [batch size, n_filters, sent len - filter_sizes[n] + 1]
|
| 35 |
+
|
| 36 |
+
pooled_1 = F.max_pool1d(conved_1, conved_1.shape[2]).squeeze(2)
|
| 37 |
+
pooled_2 = F.max_pool1d(conved_2, conved_2.shape[2]).squeeze(2)
|
| 38 |
+
#pooled_n = [batch size, n_fibatlters]
|
| 39 |
+
|
| 40 |
+
cat = self.dropout(torch.cat((pooled_1, pooled_2), dim = 1))
|
| 41 |
+
|
| 42 |
+
#cat = [batch size, n_filters * len(filter_sizes)]
|
| 43 |
+
|
| 44 |
+
result = self.fc(cat)
|
| 45 |
+
|
| 46 |
+
return result
|
| 47 |
+
|
| 48 |
+
class TextClassificationApp:
|
| 49 |
+
def __init__(self, model_path, class_names, model_name='vinai/phobert-base-v2'):
|
| 50 |
+
"""
|
| 51 |
+
Initialize Streamlit Text Classification App
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
model_path (str): Path to the pre-trained .pt model file
|
| 55 |
+
class_names (list): List of classification labels
|
| 56 |
+
model_name (str): Hugging Face model name for tokenization
|
| 57 |
+
"""
|
| 58 |
+
# Set up Streamlit page
|
| 59 |
+
st.set_page_config(
|
| 60 |
+
page_title="Text Classification",
|
| 61 |
+
page_icon="📝",
|
| 62 |
+
layout="wide"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# Device configuration
|
| 66 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 67 |
+
|
| 68 |
+
# Load tokenizer
|
| 69 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 70 |
+
|
| 71 |
+
# Load the model
|
| 72 |
+
EMBEDDING_DIM = 768
|
| 73 |
+
OUTPUT_DIM = 2
|
| 74 |
+
DROPOUT = 0.1
|
| 75 |
+
CONV_FILTERS = [32, 32] # Number of filters for each kernel size (4 and 5)
|
| 76 |
+
BIDIRECTIONAL_UNITS = 128
|
| 77 |
+
self.model = BCNN(EMBEDDING_DIM, OUTPUT_DIM, DROPOUT, BIDIRECTIONAL_UNITS, CONV_FILTERS)
|
| 78 |
+
self.model = torch.load(r'toxic.pt',map_location=torch.device('cpu'))
|
| 79 |
+
self.model.eval() # Set to evaluation mode
|
| 80 |
+
|
| 81 |
+
# Store class names
|
| 82 |
+
self.class_names = class_names
|
| 83 |
+
|
| 84 |
+
# Maximum sequence length
|
| 85 |
+
self.max_length = 128
|
| 86 |
+
|
| 87 |
+
def preprocess_text(self, text):
|
| 88 |
+
"""
|
| 89 |
+
Preprocess input text for model prediction
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
text (str): Input text to classify
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
torch.Tensor: Tokenized and encoded input
|
| 96 |
+
"""
|
| 97 |
+
# Tokenize and encode the text
|
| 98 |
+
input_ids = []
|
| 99 |
+
attention_masks = []
|
| 100 |
+
encoded = self.tokenizer.encode_plus(
|
| 101 |
+
text,
|
| 102 |
+
add_special_tokens=True,
|
| 103 |
+
max_length=self.max_length,
|
| 104 |
+
padding='max_length',
|
| 105 |
+
truncation=True,
|
| 106 |
+
return_tensors='pt'
|
| 107 |
+
)
|
| 108 |
+
input_ids.append(encoded['input_ids'].to(self.device))
|
| 109 |
+
attention_masks.append(encoded['attention_mask'].to(self.device))
|
| 110 |
+
input_ids = torch.cat(input_ids, dim=0).to(self.device)
|
| 111 |
+
attention_masks = torch.cat(attention_masks, dim=0).to(self.device)
|
| 112 |
+
return input_ids, attention_masks
|
| 113 |
+
|
| 114 |
+
def predict(self, text):
|
| 115 |
+
"""
|
| 116 |
+
Make prediction on the input text
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
text (str): Input text to classify
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
tuple: (predicted class, probabilities)
|
| 123 |
+
"""
|
| 124 |
+
# Preprocess the text
|
| 125 |
+
inputs,mask = self.preprocess_text(text)
|
| 126 |
+
|
| 127 |
+
# Disable gradient calculation
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
# Get model outputs
|
| 130 |
+
outputs = self.model(inputs,mask)
|
| 131 |
+
|
| 132 |
+
# Apply softmax to get probabilities
|
| 133 |
+
probabilities = torch.softmax(outputs, dim=1)
|
| 134 |
+
|
| 135 |
+
# Get top predictions
|
| 136 |
+
top_probs, top_classes = torch.topk(probabilities, k=1)
|
| 137 |
+
|
| 138 |
+
return top_classes[0].cpu().numpy(), top_probs[0].cpu().numpy()
|
| 139 |
+
|
| 140 |
+
def run(self):
|
| 141 |
+
"""
|
| 142 |
+
Main Streamlit app runner
|
| 143 |
+
"""
|
| 144 |
+
# Title and description
|
| 145 |
+
st.title("📄 Text Classification")
|
| 146 |
+
st.write("Enter text to classify")
|
| 147 |
+
|
| 148 |
+
# Text input
|
| 149 |
+
text_input = st.text_area(
|
| 150 |
+
"Paste your text here",
|
| 151 |
+
height=250,
|
| 152 |
+
placeholder="Enter the text you want to classify..."
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# Prediction button
|
| 156 |
+
if st.button("Classify Text"):
|
| 157 |
+
if text_input.strip():
|
| 158 |
+
# Make prediction
|
| 159 |
+
top_classes, top_probs = self.predict(text_input)
|
| 160 |
+
|
| 161 |
+
# Display results
|
| 162 |
+
st.subheader("Classification Results")
|
| 163 |
+
|
| 164 |
+
# Create columns for results
|
| 165 |
+
cols = st.columns(3)
|
| 166 |
+
|
| 167 |
+
for i, (cls, prob) in enumerate(zip(top_classes, top_probs)):
|
| 168 |
+
with cols[i]:
|
| 169 |
+
st.metric(
|
| 170 |
+
label=f"Top {i+1} Prediction",
|
| 171 |
+
value=f"{self.class_names[cls]}",
|
| 172 |
+
delta=f"{prob:.2%}"
|
| 173 |
+
)
|
| 174 |
+
# Show input text details
|
| 175 |
+
with st.expander("Input Text Details"):
|
| 176 |
+
st.write("**Original Text:**")
|
| 177 |
+
st.write(text_input)
|
| 178 |
+
st.write(f"**Text Length:** {len(text_input)} characters")
|
| 179 |
+
else:
|
| 180 |
+
st.warning("Please enter some text to classify")
|
| 181 |
+
|
| 182 |
+
def main():
|
| 183 |
+
# Replace these with your actual model path and class names
|
| 184 |
+
MODEL_PATH = '/workspaces/final-project-dl/toxic.pt'
|
| 185 |
+
CLASS_NAMES = [
|
| 186 |
+
'Non-toxic',
|
| 187 |
+
'Toxic'
|
| 188 |
+
]
|
| 189 |
+
|
| 190 |
+
# Initialize and run the app
|
| 191 |
+
app = TextClassificationApp(MODEL_PATH, CLASS_NAMES)
|
| 192 |
+
app.run()
|
| 193 |
+
|
| 194 |
+
if __name__ == "__main__":
|
| 195 |
+
main()
|